
RELIABILITY 'VOLUME 2 PROCEDU..(U) MARTIN MARIETTA
RERO0SPACE ORLANDO FL E C SOISTMAN ET AL. DEC 85

UNCLASSIFIED OR-8173-i RADC-TR-85-228-VOL-2 F/G 9/2 Nt

EI EEhhEEE

EoEEE.EEonhEEE

-)

w_____ 13. 11112.2

W 3.

m I_

t o 1111121.0

IIII1

11.25

-jj .A 11.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-
) 9 6 3 - A

.t,

()RADC-TR65-228, Vol 11 (of two)4
(NFinal Technical Report

December 1985
in

'~IMPA CT OF HA RDWARE/SOF TWA RE FA UL TS
ON SYSTEM RELIABILITY Procedures for
Use of Methodology

DTC
Martin Marietta Orlando Aerospace ..-LEC TE

MARI a 86

Edward C. Solstman and Katherine B. Ragsdale

APPROVED FOR PUBLIC RELESE,' DISTRIBUTION UNLIMITED

LU

FZ ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

*86 3 13 191

................

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-85-228, Vol II (of two) has been reviewed and is approved for ..

publication.

l 4' /
,-," APPROVED: - -. * ' "

EUGENE FIORENTINO
Project Engineer

APPROVED:

W. S. TUTHILL, COLONEL, USAF
Chief, Reliability & Compatibility Division

FOR THE COMMANDER:

JOHN A RITZ
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
* list, or if the addressee is no longer employed by your organization, please

notify RADC (RBET) Griffiss AFB NY 13441-5700. This will assist us in main- " -

. taining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
., on a specific document requires that it be returned.
I

-

-6-

SEUIF IINF TH PAE A - /
REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS 7

UNCLASSIFIED N/A
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

N/A Approved for public release; distribution
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited. .1-

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

OR 18,173-1 RADC-TR-85-228, Vol II (of two)

Ba. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Martin Marietta (If applicable)
Orlando Aerospace I Rome Air Development Center (RBET)

6c. ADDRESS (City. State, and ZIPCode) 7b ADDRESS (City, State, and ZIP Code)

P.O. Box 5837 riffiss AFB NY 13441-5700Orlando FL 32855

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER %

ORGANIZATION (If applicable)

Rome Air Development Center RBET F30602-83-C-0050

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO NO NO. ACCESSION NO.

62702F 2338 02 96

11. TITLE (Include Security Classification)

IMPACT OF HARDWARE/SOFTWARE FAULTS ON SYSTEM RELIABILITY Procedures for Use of Methodology

12. PERSONAL AUTHOR(S)

Edward C. Soistman and Katherine B. Ragsdale_
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final FROM Mar 83 TO Jan 85 December 1985 104
16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Reliability
14 4 Software Quality

9 2 Hardware/Software Reliability Prediction

- [19. ABSTRACT (Continue on reverse if necessary and identify by block number)

)The objective of this study was to develop techniques, for predicting total system relia-

bility, which include the combined effects of software and hardware. Since hardware

reliability techniques are much further developed, the study emphasized methods of

characterizing software reliability. The software reliability prediction methodology

contained in the report is compatible with hardware reliability techniques and definitions

and is applicable during early development so that the predictions can influence the design

and development process.

The software reliability prediction techniques use both software product and development
.-

process characteristics to develop estimates of the reliability of the various software

components which comprise the system. The software component reliabilities are combined

via a Markov model to obtain estimates of software system reliability. Estimates of the

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT QOTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Eugene Fiorentino (315) 330-3476 RADC (RBET)

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECLRITY CLASSIFICATION OF HIS PAGE-

All other editions are obsolete. UNCLASSIFIED

%

; j ~ - 11'.%%

+ ,5+...,..+ ,i' ,., +,,, .+... • ++,%, .+.+ ,,, .. . r+ .. , " . ,.."% ' %

UNCLASSIFIED

execution frequencies of the various software components, as a function of the mission
profile, are required by the methodology.

Procedures for application of the techniques are provided and are intended for use by
a reliability engineer having a basic knowledge of software engineering practices.' The techniques offer a rudimentary framework for predicting total system t !

reliability. Validation and refinement of the techniques using software development
and field reliability performance data remains to be accomplished.

17. COSATI CODES (Continued)

Field Group

18 03 uf

p'5,li

V77-

.5- .. : V : :,, .- :;.:-'-:: , , ,.T :, :, !,.: ,

%d

r
5

VS

TABLE OF CONTENTS

1.0 PROCEDURE FOR UTILIZATION OF THE COMBINED HARDWARE/SOFTWARE
RELIABILITY PREDICTION METHODOLOGY......................I

1.1 Overview and Objectives. I
1.2 Approach 2
1.3 Procedure. 4

1.3.1 Preliminary Analysis. 4).n.4

1.3.2 Calculate the Software Reliability. 6

1.4 Examples 6

1.4.1 Detection and Warning System. 6
1.4.2 Assault Breaker 7

1.5 Summary. 7

APPENDIX A - FUNCTIONAL DECOMPOSITION.......................A-I
APPENDIX B - FUNCTIONAL FLOW DIAGRAM..........................B-1
APPENDIX C - MISSION THREAD ANALYSIS..........................C-I1..
APPENDIX D - INDIVIDUAL COMPONENT CHARACTERISTICS.................D-1
APPENDIX E - INDIVIDUAL COMPONENT RELIABILITIES..................E-1
APPENDIX F - OVERALL SOFTWARE RELIABILITY....................F-I ~ kn

APPENDIX G - DETECTION AND WARNING SYSTEM....................G-1
APPENDIX H - ASSAULT BREAKER............................H-1
APPENDIX I - WORKSHEETS............................ . .. -

Accesion For
NTIS CRAM -
DTIC TAB0
Unannous-ced Q
Justificatioi,

Dist ibution I

Availability CodeS

Avail-and I or
Special

A',' 7QUALITY N

\iNi' iTE

S1. - 3i ~ . . ~ . i, n n i

ti . n,'i-i i. nn in-.........%i i

in... % n i.iii'i..'ni

LIST OF FIGURES

Figure 1. Parallel Hardware and Software Techniques.............3

ILI-Figure A-i. Software Decomposition Process and Terminology. A-3
IFigure B-I. Equivalent Logic Representations B-3

Figure E-1. Relationship of R(I), R(C), A and D...............E-6
Figure G-1. Functional Flow Chart......................-9
Figure G-2a. Track Module Worksheet No. 1.....................-10
Figure G-2b. Track Module Worksheet No. 2..................G-11
Figure G-2c. Track Module Worksheet No. 3................G-12
Figure G-2d. Track Module Worksheet No. 4.................G-13

~IiFigure G-3. Annotated Flow Chart.....................-14
Figure G-4. Computer Output...........................G-15

Figure H1-1. Functional Flow Diagram.........................H-7
Figure H-2a. Antenna Select Module Worksheet No. I H-8
Figure H-2b. Antenna Select Module Worksheet No. 2. H-9
Figure H-2c. Antenna Select Module Worksheet No. 3............H-10
Figure H-2d. Antenna Select Module Worksheet No. 4 H-11
Figure H1-3. Annotated Flow Chart.......................H-12
Figure H-4. Computer Output.........................H13

iv

N. %

LIST OF TABLES

Table D-l. Inherent Characteristics D-3
Table D-2. Error Avoidance Characteristics...............D-5
Table D-3. Error Detection Characteristics. D-8 :

-I2.

1.0 PROCEDURE FOR UTILIZATION OF THE COMBINED
HARDWARE/SOFTWARE RELIABILITY PREDICTION METHODOLOGY

I I Overview and Objectives

The prediction methodology described below was developed by Martin "

Marietta Aerospace as part of a Research and Technology contract performed
for the Rome Air Development Center (RADC).

Although many models exist for measuring and estimating total system
reliability, very little is available Lo assist a procuring agency or soft- W

ware developer in predicting system reliability during the early phases of
the Development Life Cycle. Specifically, there has been no software
equivalent to MIL-HDBK-217D. Quantitative evaluation of software reli-
ability follows two extremes.

At one end of the spectrum, research has involved the psychological
aspects of computer programming by considering the mental processes
performed during software creation. Although this basic research is very

- interesting and may eventually lead to very sophisticated automatic program
* generators, it is too detailed and imprecise to be usable by a system

planner or analyst.

At the other end of the spectrum, many mathematical models are avail-

able to measure and estimate software reliability based on historical
failure information. These models are extremely valuable, but not until a
system is actually developed. They are of little value to a planner who
must be able to predict reliability based on the nature of the mission and
the intended method of development.

The methodology described here was developed specifically to fill the
void. Although it lacks the academic generality of psychological
approaches and the statistical accuracy ot measurement and estimaLion
methods, it provides a prediction tool that can be used early in the life
cycle ot software development; a time when alternate approaches can be
evaluated and cost tradeotts can be performed. Specific features of the

methodology include: .

I Applicable during early design/development

'. 2 Applicable throughout the development cycle

3 Yields quantitative reliability predictions

4 Utility as a design and process evaluation tool

5 Uses the operational mission scenario as a basis for prediction

6 Compatible with MIL-HDBK-217D techniques and reliability
definitions.

Jul 9.

% % .0. ."'. "'V ". ' . "- • 7 ' , %'" ' ;" -- " '- %, % .%.- . ' .- ''' . .,%.- .*.o%%.' . .';. -"-. - " i.

1.2 Approach

The methodology was developed to maximize the parallelism of software
reliability prediction and classical hardware techniques (Figure 1).

Although the sequence of steps for performing a software reliability
* prediction are nearly identical to those for a hardware analysis, the

terminology, procedures and techniques differ quite extensively.

Whereas hardware components fall into some generic class based on
;. their electrical construction and material composition software components
*" are categorized by their logical makeup and purpose. Like hardware, soft-

ware has intrinsic characteristics that can generally be used to classify .-

it and obtain a starting or base reliability. Generally, these character-

istics are identifiable by the functional requirements imposed on the soft- _-

ware before it is even designed. For example, a software component that is - .
required to operate in real time tends to be more error prone than one that
operates in a batch environment.

Hardware component reliabilities are adjusted by pi factors determined

by the various aspects of their development and operational environments.
Factors such as stress, environment, quality, temperature, and technology
must be identified and applied to component reliabilities before they can
be incorporated into the reliability model. Fortunately, MlL-HDBK-217D

provides extensive lists of factors for virtually all situations.

Software component reliabilities are similarly adjusted based on the
environment in which the software is developed. Software is immune to
stresses as used in hardware analysis, such as temperature and vibration.
Software is pure logic, with no physical nature. Its reliability is

affected by the characteristics of the software product which predisposed
it to error and the manner in which errors are avoided or detected and

corrected. These are the only pi factors of concern to software reli-
ability prediction. Unfortunately, extensive lists of factor data similar
to that provided by MIL-HDBK-217D for hardware are not available. The

appendices to this document present factors that were~derived from a rel-
41. atively large survey of software experts. Statistically, the survey data

16 provides an accurate representation of what practitioners believe the
factors to be. Currently, it is the best available data. Although the
data available at present is not based on extensive analyses or experi-
mentation, the methodology is sound. As more precise data becomes avail-

able, the factors and their values may require revision. However, the
-" method should remain intact. Even with imperfect data, the method will
. provide relative figures of merit for the analyst to compare alternate

approaches to software development. The methodology and the data provide a

tramework for the creation of a software handbook similar to MIL-HDBK-217D.

MIL-STD-785B prescribes the manner in which hardware reliability block

diagrams are to be resolved. Methods of combining serial components, I

2A,-I" °

, The hardware subsystem is The software subsystem is

decomposed into lower level decomposed into its lower

Ssubsystems level computer programs

-Decomposition continues Decomposition continues

until a component level until a program module %
is reached level is reached J

Component reliability is Module reliability is

predicted based on the predicted based on its
inherent physical charac- inherent functional

teristics modified by pi characteristics modified

factors, which account by an enhancement factor,

for its intended operating which accounts for the

environment and usage process used to develop it

System hardware reliability System software reliability

is predicted by combining is predicted by combining

mathematically the component mathematically the module

predictions in accordance predictions in accordance
with the physical/electrical with path usage probabilities

configuration of the hardware based on the mission scenario

Figure 1. Parallel Hardware and Software Techniques

t -

* , - . " - - I- , , -.-. .-. , ' Y- - - -.- ,- .- .. *..- ,-, , . , - . - . - -

parallel components, redundant components, etc. have been well developed
and practiced by hardware reliability engineers for some time. With few
exceptions, classical combinatorial techniques used for hardware analysis.
are not usable for software analysis. A logical path through a computer
program is a straightforward serial arrangement of critical components. If
there were only one path through, a computer program, its reliability would
simply be Lhe product of the reliabilities of each software component in
Lhat path. however. there are typically thousands, and often a nearly
infinite number of paths possible. The reliability contribution of each
software component becomes a conditional probability. It is the probabil-
ity that the component will operate successfully, given that it is executed
in a particular path. Obviously, the computational aspects of evaluating

thousands, or millions, of conditional probabilities are not feasible.
Fortunately, a mathematical technique is available to alleviate this
situat ion.

Determining system reliability from the c~mputed hardware and software

reliabilities is again slightly different from normal hardware analysis.
Software reliability is not directly a function of time, but rather a func-
tion of the particular mission scenario that it is required to perform.
Whereas hardware is usually considered to have a constant failure rate for
a particular mission and environment, software can be considered to have a
fixed reliability over a given mission duration and input environment. To
determine system reliability, we must multiply software and hardware reli-
abilities.

Lastly, it must be again emphasized that software reliability is
critically mission dependent. Although individual software component
reliabilities will not change. their execution frequencies will change for
different missions. Whenever a different mission scenario is to be
evaluated, the software subsystem reliability must be recomputed.

1.3 Procedure

Application of the reliability prediction methodology is relatively

simple. The steps are performed in sequence using tools common to software
engineering. Since the methodology does not impose any restriction or
special condltions on standard hardware prediction techniques, the classi-
Lal methods ot MIL-STD-7b6B and MIL-HDBK-217D can be separately applied,
without alteration, for all hardware components of the system under analy-
-is. Sottware reliability prediction is accomplished as described in the

following paragraphs.

1.3.1 Preliminary Analysis

Before using the computational aspects of the methodology, it is

essential that preliminary analysis of the software system be accomplished.
The following are typical software engineering activities that are
accomplished during the preliminary design phase of a software development

N~..

4 "

--- -

effort. They are considered to be good engineering practices independent
of their usage for reliability prediction.

Perform A Functional Decomposition (Appendix A)

During preliminary design of a software product, it is necessary to
allocate every functional requirement of the software subsystem to the
identifiable and separable components of the total software product. Among
the products of this phase is a list of software components (e.g., modules)
and their individual functional requirements. Analysis cannot proceed
until this step is completed.

Construct A Functional Flow Diagram (Appendix B)

After all components of the software and their indiviual requirements
have been identified, it is necessary to show their functional relation-
ships to each other. A functional flow diagram is a tool that can be used
for this purpose. Other tools are also available and may be used in the
analysis. The important output of this phase of the analysis is to clearly
understand how components pass control to one another. Results of this

* a ,analysis will be used directly in latter phases of the reliability predic-
Lion.

Perform A Mission Thread Analysis (Appendix C)

When the tunctional flow diagram just described is completed, it is
necessary to assign path probabilities to each decision point depicted.
For a given mission, each individual branch must be evaluated to determine
(or estimate) its probability of execution, given that control has reached
the branch point. During the preliminary design phase of the development
effort, these values will probably be rough estimates. As the design
becomes better developed and understood, the data can be updated to afford
greater precision. For real-time applications, these values are critical
to the engineering process itself and should be available early in the
design phase.

IdenLify The Individual Component Characteristics (Appendix D)

The reliability of each software component is predicted based on its
inherent characteristics (attributes of the software PRODUCT) and its
developmental characteristics (attributes of the software development
PROCESS).

The functional requirements for each componekit are known to the
analyst as a result of the functional decomposition described earlier

0(Appendix A). The inherent characteristics used within the prediction
methodology are defined in Appendix D and included in the worksheets
(Appendix I). The analyst must identify the appropriate characteristics
for each software component within the overall software subsystem by
choosing those which best describe the tunctional requiremunts. By using

'. r

.-- . .---.- .. .-',.--.--.-- - -- -,.- - - ,.- ---. . .- . -- - -

4'..

the worksheets provided, the analyst can determine the types of errors most
likely to be encountered during the development process.

The techniques to be used during software development must also be
identified at this time in the analysis. The techniques can be classified
as being either an error avoidance technique or an error detection tech-
nique. The techniques used within the prediction methodology are also
defined in Appendix D and included in the worksheets (Appendix I).
Typically, the techniques to be employed (structured approaches, independent
test, etc.) are identified in a Software Development Plan or equivalent
document. Such a plan is considered to be good engineering practic, and is

usually a required, deliverable data item for DoD contracts. By using the
worksheets, the analyst can determine the collective effectiveness of the
planned techniques for the type of errors expected.

1.3.2 Calculate the Software Reliability

Compute Individual Component Reliabilities (Appendix E)

Individual reliabilities are computed in accordance with the methods
derived and described in Volume I of this report. The technique is
described briefly in Appendix E. Worksheets have been devised to simplify

p the computation process. Having already gathered the individual component
characteristic information just described, the analyst simply performs the
operations described on the worksheets. The only computations involved are
simple addition, multiplication, and division, which can be performed
either manually or with a small calculator.

Compute Overall Software Reliability (Appendix F)

After the individual component reliabilities have been calculated and
the path probabilities (described under functional thread analysis) are
known, the analyst must construct a transformation matrix as described in
Appendix F. The matrix is actually a representation of all of the joint
probabilities of a component successfully executing and passing control to
the next component. Calculation of the overall software reliability
involves the inversion of this matrix and could involve relatively complex
mathematics. Although matrix inversion can be accomplished manually for
software containing relatively few functional components, it is highly
desirable to computerize this step of the analysis.

1.4 Examples

Two examples have been included to demonstrate the methodology
applicat ion.

1.4.1 Detection and Warning System (Appendix G)

This example was created specifically for demonstration purposes. It
describes a typical, albeit simplified, software application. The software

.

• . L,, .: .. ' .. ''.'o• " '• ' .'". " '', '.'% - .'-.''. ' , ".-'" '•- 4-.- , .. ''. * " .- '. -\ 4

" receives target data from some sensor. If the data meets certain correla-
tion criteria, an acquisition mode is initiated and the target is tracked

assuming that the acquisition was successful. If the tracked target is
hostile, a report is generated. In any event, the system returns to the
search mode of operation.

1.4.2 Assault Breaker (Appendix H)

This example was taken directly from a completed Martin Marietta

software deveLopment project. Assault Breaker software was responsible for
guidance and control of a tactical missile. The software was required to

operate in real time with relatively precise timing constraints. It was 6

developed using modern top-down, structured design approaches and was

thoroughly documented during its development. This software was chosen as
an example because it demonstrates the effectiveness of some software
techniques and represents a good example of the manner in which path

execution probabilities can be determined.

1.5 Summary

*0 The methodology presented here provides a workable technique for
determining software reliability information at any stage of software
development, subsequent to preliminary design. It can and should be used

recursively throughout the development process to evaluate the approaches
being taken, to alert management when reliability predictions fall short of
required performance criteria, and to evaluate the impact of alternate

approaches.

Appendix I includes copies of the worksheets required for analysis.

ws

%%

-0.

%L

44* ' o .. .A. - 'w ,. ' '. /' . "' .# . (. . ".,
' ' .

" .'' . '.', ' .,L l " '

'N

4

N-.'.&
'N'.

'1."A

*1,***

NN
N

N
N

0
".~1

* ArrF.IIJIA A

FUNCT tONAL DECOMPOS IT ION

a.

-x

-'I

'N.

N,
A

N'
"-'4

"N'

N'

d

A-i

6I
*N a ~ - *',. ~ NNN~N" * ~'N* I',, * N * * *, * . -

1.0 INTRODUCTION

Decomposition of computer software is accomplished much like hardware.
Whereas hardware subsystems can be segmented wherever a connection has been .'

(or will be) made, software can be broken anywhere in the sequence of com-
mands that it executes. In both cases, however, it is illogical to discon-
nect components except at the physical (or logical) boundaries of complete
subunits. For hardware we might decompose a system into black boxes,
decompose the boxes into printed circuit boards, decompose the boards into
circuits and finally decompose the circuits into their respective electri-
cal components. It is essential that every phase of the process yields
complete subunits. Computer programs are similarly decomposed.

Figure A-I illustrates the generally accepted terminology associated
with software decomposition. It lists the terminology specified in the
proposed military standard DoD-STD-2167 and has been extended to the lowest
possible level by this author. At the highest level, software is defined
as a configuration item, one which is defined by and for the procuring
agency. It has considerable contractual significance but has no logical or
functional characteristic. At the other end of the spectrum, the level of
detail is so specific that prediction is not possible until after imple-
mentation.

Although the software prediction methodology is not affected by the
level to which the software is decomposed, it is practical to define its
applicability as ranging from CSC level through the module level. Gener-
ally, CSC level decomposition is possible during the requirements defini-
tion phase of software development, unit decomposition is possible during
preliminary design, and module decomposition is possible during the detailed

design phase. At each milestone the software reliability prediction meth-
odology can be re-applied with greater accuracy. For generality, the term -'
"software component" is used to include all levels of sottware decomposi-

Lion between the CSC and module level.

A-2

4~~ V .4...

COMPUTER SOFTWARE CONFIGURATION ITEM (CSCI) - software aggregate which is

designated by the procuring agency for configuration control

--- COMPUTER SOFTWARE COMPONENT (CSC) - a functional or logically

distinct part of a computer software configuration item

L---UNIT - the lowest level logical entity specified in the

detailed design which completely describes a non-

divisible function in sufficient detail to allow
implementing code to be produced and tested independently

of other units

L-MODULE - the lowest physical entity specified in the

Vdetailed design which may be assembled or compiled

* alone

L--INSTRUCTION - a single line of code which may

correspond to a single action of the computer

or may be automatically translated into a

series of single actions of the computer
/.: .

F-OPERATION - the action to be performed by

the computer

-- OPERANDS - the symbolic or absolute .

addresses of the computer memory where the

data to be processed reside.

Figure A-I. Software Decomposition Process and Terminology

a,.1 A-3 '

.:',ea, " ' jp ", ., /' ",'- ."- . ' .'. , " , -, . ",, - ' -. , S , ." ., -' 9, ""; '' ,,;".-.- '.

2.0 METHODOLOGY

The analyst must begin his reliability prediction with a relatively
complete description of the overall software functional requirements and
the manner in which these requirements are allocated to the various sub-
units that make up the software system. Such a functional decomposition is
required for the software development team as well as the reliability
engineer. Typically, a software project manager will segment the overall
job into subtasks which can be individually assigned, tracked, tested and
eventually integrated back into the overall software system. It is con-
sidered good engineering practice to perform this segmentation functionally.
That is, top-down, structured design approaches provide both the mechanism
and the motivation for the accomplishment of a functional decomposition
very early in the design effort. The reliability engineer should obtain
this top-level breakout as soon as it becomes available.

P O --.

A-4

.

.

% ,, -. _, ,, • , .-.,, - .. -, ,,, •. -- .. '.', ,.

3.0 USE OF THE FUNCTIONAL DECOMPOSITION

Properly prepared design documentation should include identification

of all components (modules), their functional requirements, their inputs

and outputs, performance requirements, testing plans, development schedule

and their interface requirement. When this information is available, each

module can be evaluated with respect to its contribution to the overall

reliability prediction. The functional flow diagram, described in Appendix

B, and the component reliability worksheets can be prepared.

A-5'

o.,

U ...

o.'

A-

".4

-I
4).,,

~ .. ~

-- -

44

APPENDIX B

4~ p.

FUNCTIONAL FLOW DIAGRAM

w.

'4.-
*44 4

4
* .1*. .4)..

. 4, '.4,

*1 .4.4

V.
* V
44*

4.;.

44.44))

.4,.;

-I.

4.

--. 4.B-i
4;N)

I4'-)"

a
4.~2 t.~ - -

- -. -~ - -.

..................................
-.- %.~

- -. *'. N'. '..NN',,4'
4 '

1.0 INTRODUCTION

The functional flow diagram is an integral part of the software reli-

ability prediction methodology. Although the particular form ot the
diagram is insignificant, the data it contains is critical.

The most commonly used tool today is the flowchart. Both of the
example problems included in this report (Appendices G and H) use flow-
charts to depict the functional flow of control within a software system.

Another method commonly used is the Visual Control Logic Representa-
tion (VCLR) diagram. These diagrams have the added feature of directly

"" supporting structured programming. Each symbol used is completely self-
contained and has a single entry and a single exit. The VCLR is an equally
sufficient tool for use in identifying the data required for the prediction
methodology. Paths are a little less obvious and determining path prob-
abilities may be-a bit more difficult than when working with flowcharts,
but the increase in structuredness should be worth the tradeoff.

It is very likely that diagrams as such will be used less and less

frequently as Program Design Languages (PDLs) become more widely used.
PDLs are languages used to describe the design. They may or may not
produce executable code. Their primary purpose is to specify and create

the logic of the computer program. They have the features of being pre-
cisely definable and are usually accompanied by a variety of automatic
design checking tools (consistency, continuity, etc.). Ada can, and
probably will, be used as a PDL. As its usage spreads, we may enter a
programming environment where the software design as well as the code is
expressed in machine readable form compiled and checked. This could
greatly enhance the application of the software reliability prediction
methodology. Actual frequency counts of logic segments can be produced by

.. the PDL compiler. That is, the actual path probabilities could be
automatically and continuously monitored during the design phase.
Automatic computation of software reliability would become feasible.

Figure B-I illustrates equivalent logic representations using a

flowchart, a VCLR, and a PDL, respectively.

%I%

. ., ., .- - - - . . . - .: b .", .,, , .' ,; r ,, - , - . . ," -,.- "- . -"- . ". .". . ., . .- ,.".,. ...%.

MOUEMODULE FLOW CH&RT

TRUE VCLR

IF CONDITION THEN
MODULE AP0

lb ELSE D
MODULE 8

ENOIF

Figure B-1. Equivalent Lgic Representations

B-3

%4

2.0 USE OF FUNCTIONAL FLOW DIAGRAMS

The reliability engineer requires detailed information about the logi-
cal relationships between individual components of the software system.
Regardless of the format of the diagrams, he should be able to follow the
flow from one component to the next through the program. He should like-
wise be able to identify mission threads through the program. That is, if

the software is required to perform more than one mission, the conditions
which define the mission, should be self-evident within the flow diagram.
Similarly, a single mission application may be required to progress through

* several modes of phases (e.g., boost, burnout, ballistic, final). The
" reliability engineer should be able to identify the criteria and logic

involved based on the information contained in the flow diagram.

' s~*A thorough and accurately prepared functional flow diagram will
provide the analyst with the information required to accomplish the next

step of the analysis (Thread Analysis).

'.B-4

%* - 4---

N

Nf

'4~. .

.

-'7 , iA7

N7,*1

1.0 INTRODUCTION

A clear understanding of the mission requirements of a computer pro-

gram is essential to the successful application of the reliability predic-
tion methodology. Software failure mechanisms are not the same as those
which influence hardware reliability. Whereas hardware is affected by
environmental and stress conditions, software is not, at least not in the
same sense. The environment in which software operates consists only of
the internal state of its storage and registers and the external influences
it sees via data coming into or leaving its storage. Software is stressed
when accumulated internal and external effects cause it to execute a logic
path that has never been traversed before or when it follows a previously
used path with an internal state which has never occurred on that path
before. A computer program which continuously repeats the same logic paths
with the same data will either fail on the first pass or will never fail.
Unfortunately, even a simple program has an extremely large (possible
infinite) number of logical paths through it. Equally awesome is the size , -

of the input domain even when only a few 16-bit variables are required.

For a given path and a given state, the reliability is, in fact,

deterministic; i.e., it will either work or it won't. However, historical

software performance data invariably shows that software failures occur
probabilistically. The only explanation possible is that the software
experiences state changes probabilistically. Exhaustive testing to check
every possible state of every possible logic path is highly impractical and

typically impossible. The reliability prediction methodology described in
this report relies on a statistical technique to account for all possible
paths by use of mission scenarios which are defined by path probabilities
at every decision point in the software. These probabilities are assigned

based on the functional flow diagram (Appendix B) and the construction of a
mission profile based on software mission requirements. 4

Vj .

C-2

......-...................... .- .. - -..............-. - -.......

T,,W J -. i-iI- -

2.0 MISSION THREAD ANALYSIS

Branch points within the flow of a computer program must be expressed
in machine-understandable form. For the decision to be properly imple-
mented, it is essential that the programmer understand the exact conditions

-. under which the branch will occur. Appendix H describes the process used
in determining what path probabilities to assign to various branches based
on an engineering description of the software design. There is no set
formula for how to assign these probabilities, so the analyst must
thoroughly understand the mission requirements and apply that knowledge in

-' making sound estimates. In one case, the values might be precisely
determined through mathematical interpretation of the stated requirement
such as the Assault Breaker example in Appendix H. In another case, they

, may involve engineering judgements. The example depicted in Appendix G
includes both. In one case, the branch criteria was based on a required
time period for preventative maintenance and the path probabilities could

- be directly computed. In another case, the path probability assigned to
. leave the search mode was based on an estimate that the system would spend
"" 90 percent of its time in the search mode.

The best recommendation possible at this point is to suggest that
4several analyses be performed using different path probabilities at those

branches where there is ambiguity. By varying the values, one at a time,
the analyst can determine the sensitivity of the reliability prediction to

% the value in question.

c-3

• I. -

, - - '- . ., . . . , . - - - . " . . ' . . - -. , , ' - . .. - ,- , , ., . , . - ,.,C- 3 - .

1.0 INDIVIDUAL COMPONENT CHARACTERISTICS

This appendix presents the lists of characteristics which were identi-
fied during the study as having a significant influence on software rell-

ability. lables D-l through D-3, respectively, list:I Inherent Characteristics of the software PRODUCT which influence
its error proneness

o Error Avoidance Characteristics of the PROCESS used to develop the
software

o Error Detection Characteristics of the PROCESS used to develop the

software.

The lists are ordered in the same sequence that they appear in the

worksheets (Appendix I) so that the analyst can refer to the definitions
while determining which characteristics best describe the software and
development process for which a reliability prediction is being made.

J.:

D-2 V
4.,1

TABLE D-1 Inherent Characteristics.

OPERATIONAL APPLICATION TYPE - This characteristic is used to describe the

predominant use of a software component. For example, if the purpose
of the module is to issue commands to hardware components, we would say
the module is of the "predominantly controlled type". even though it
includes computational commands.

CONTROL - The action of initiating, sequencing, terminating or otherwise
* influencing the operation of system components external to the software.

* REAL-TIME - The processing of information or data in a manner sufficiently
rapid that the results of the processing are available in time to
influence the process being monitored or controlled.

INTERACTIVE - A method of conversational input/output wherein the software
*, produces an output which invokes a responsive input or receives an input

which requires a responsive output.

COMPUTATIONAL - The process wherein internally available data is combined,
rearranged and/or otherwise manipulated to alter its state. For example
a module whose purpose is to convert measurements from one dimension to
another should be regarded as being computational.

MISSION VARIABILITY - In most large scale software applications, a variety
of missions or modes of operation are supported. For example, software
requirements for embedded software in a missile system may involve
distinct modes of operation such as pre-flight, boost and ballistic
activities. Some modules will perform the same activities regardless of
the mission type, while others will have distinctly different character-
istics depending on the mission mode. MANY and SEVERAL operational
missions are relative terms that may be interpreted at the discretion of
the reader.

FUNCTIONAL COMPLEXITY - In order to meet its intended purpose, a module
may be required to perform more than one specific task. These entries

accommodate the tact that some functions are relativej.y easy to design

and code whereas others can require extensive and highly complex logic.

SYSTEM INTERACTION - This category is a refinement of earlier categories.
Interface requirements are as previously defined. EXTENSIVE and
MINIMAL are relative terms that may be interpreted by the analyst.

INPUT DOMAIN VARIABILITY - This category is a refinement of earlier cate-
gories. Here, the interest is not in the quantity of inputs required,
but rather the domain from which it comes. For example, a function
which requires yes or no answers to many questions would have a NARROW
RANGE of values (yes or no). On the other hand, a single input of an
angle measurement might have a domain of -180.0000 to +180.0000 degrees.
This one would be considered to have a WIDE RANGE of inputs.

D-3

41"J
.

TABLE D-1. Inherent Characteristics (Cont).

ERROR-PRONE/ERROR-FREE - These adjectives are used to distinguish the

effects on module reliability caused by the SOURCE of data inputs. A
device which contains self-checking features to ensure that its inputs

to the computer are correct would be considered error-free. On the
other hand, other input devices, such as human operators, may be

considered to be error-prone.

S . " -

.. 4

4D-4

-. ,! ~D-4 i"

:, ... , -.. , ,...- - ..

TABLE D-2. Error Avoidance Characteristics.

QUALITY ASSURANCE ORGANIZATION - A group responsible for the planned and
systematic review of the software development process and its products
to provide adequate confidence that the item or product conforms to
established technical requirements.

TEST ORGANIZATION - A group responsible for preparing test plans and
procedures, executing the test procedures, and analyzing the test
results in order to verify that the system performed its intended
functions. This group is also responsible for documenting problems
detected during testing and verifying by retest that corrections to
the software work properly. .-. -

INDEPENDENT VERIFICATION AND VALIDATION (IV&V) - Verification and
validation of a software product performed by an organization that is
both technically and managerially separate from the organization

responsible for developing the product.

SOFTWARE SUPPORT LIBRARY - A software library containing computer
readable and human readable information relevant to a software
development effort.

CONFIGURATION CONTROL BOARD - The authority responsible for evaluating
and approving or disapproving proposed engineering changes, and
ensuring implementation of the approved changes.

SOFTWARE DEVELOPMENT PLAN - This document presents the comprehensive plan

for the project's software development activities by describing the
software development organization, the software design and testing
approacbh, the programs and documentation that will be produced,
software milestones and schedules, and the allocation of development
resources.

SYSTEM REQUIREMENTS SPECIFICATION - This document states the technical
and mission requirements for a system as an entity, allocates
requirements to functional areas, and defines the interfaces between
or among the functional areas.

INTERFACE DESIGN SPECIFICATION - This is an optional document which is
required whenever the system contains two or more computers that must
communicate with each other. It provides a detailed logical
description of all data units, messages, control signals and
communication conventions between the digital processors.

SOFTWARE REQUIREMENTS SPECIFICATION - This document establishes the

requirements for the performance, design, test and qualification of
the computer program.

D-5

%...
,,,4 ., , .,," .. ., ".,, ,. .. ,.,, ,. ., ... ,., .: 3% '. : ', ,' . .' .,,, ,, k , '. ,' .. ., ., .

TABLE D-2. Error Avoidance Characteristics (Cont).

SOFTWARE FUNCTIONAL DESIGN SPECIFICATION - This document establishes the
functional design of the software at the computer program level. It

provides sufficient design information to accomplish the goals of the
Preliminary Design Review.

SOFTWARE DETAILED DESIGN SPECIFICATION - This document provides complete
programming design sufficiently detailed for a programmer to code from
with minimal additional direction.

REQUIREMENTS TRACEABILITY MATRIX - A set of tables which provides trace-
ability of software requirements from the system specification to the

individual item requirements specifications, to the design specifica-
tion which implements the requirements, and to the software plans and
procedures that verify that requirements have been fully implemented.

STRUC7iURED ANALYSIS TOOLS - These define a systematic method of using
function networks and other tools to develop an analysis-phase model
of a system. Typical tools include Data Flow Diagrams, Data
Dictionaries and structured English.

..' PROGRAM SPECIFICATION LANGUAGE (PSL) - A language used to specify the

requirements, design, behavior, or other characteristics of a system
or system component.

PROGRAM DESIGN LANGUAGE (PDL) - A language with special constructs and,
sometimes, verification protocols used to develop, analyze, and ctocu-
ment a design.

HIGH ORDER LANGUAGE (HOL) - A programming language which provides

compression of computer instructions such that one program statement
represents many machine language instructions. It is non-problem
specitic and is used by progranners to communicate with the computer.

HIERARCHICAL DESIGN - A design which consists ot multiple levels of
decomposition, general to specific. It is a structured approach with
the additional restriction that program control is accomplished
hierarchically. That is, program modules may only invoke other
modules which are subordinate to them.

TOP-DOWN DESIGN - An ordering to the sequence of decisions which are made
in the decomposition of a software system, by beginning with a simple
description of the entire process (top level). Through a succession
of refinements of what has been defined at each level, lower levels
are specified.

STRUCTURED DESIGN - A disciplined approach to software design which
adheres to a specified set of rules based on principles such as

top-down design, modularization, stepwise refinement, etc.

D-6, ,
Ib; £' .

r -:': ::'- v -.':'- ---:...-;:..,;'7< -,--:'; :;;-:. .2:::7 '": -5 .-,- .v ,.,... -..- ..- .

TABLE D-2. Error Avoidance Characteristics (Cont).

SINGLE FUNCTION MODULARIZATION - An organization of the functions of the
- computer program into a set of discrete program modules each of which

is designed to perform a single function.

STRUCTURED CODE - A code that has been generated with a limited number of
well-defined control structures using stepwise refinement.

.- AUTOMATIC MEASUREMENT TOOLS - This category includes all computer pro-

grams which evaluate other computer programs. They may be used to
verify compliance with coding standards, to measure progress, or to
provide a measure of complexity. They may be applied to any or all
phases of the development cycle.

AUTOMATIC TEST TOOLS - This category includes all computer programs that
4'" automatically devise and/or execute tests on other computer programs

by analysis of the path logic and variable domains of the software

being test d and construction of test data sets which will exercise

all logical paths under all or extreme input conditions.

4N.

'V

e71

.---

.4,'

%Y

44%

4 .. .,. . . , -, '4 ' . 4 ~ *, ,

TABLE D-3. Error Detection Characteristics.

FREQUENT/INFREQUENT - These are relative terms that may be interpreted by
the reader. In general, however, it is preferred that "frequent" be
used to describe activities that occur on a regular, scheduled basis
(e.g., weekly). "Infrequent" carries the connotation that the
activity is less rigidly planned and accomplished (e.g., whenever a

problem is suspected).

WALKTHROUGH - A review process in which an analyst, designer or program-
mer leads one or more peers through a segment of the software product
which he or she has developed.

PROGRESS REVIEW - For purposes of this survey, a progress review is a

periodic report given to an individual's supervisor to provide an
assessment of the state of completion of a software product. This is

in contrast to a walkthrough which is conducted among peers and is
primarily technical in nature.

QUALITY AUDIT - For purposes of this survey, a quality audit is an
announced or unannounced inspection of a software product or process.
For example, an audit may consist of an inspection of a portion of a
programmer's code to verify compliance with programming standards.

SOFTWARE PROBLEM REPORT - A report of a program deficiency identified
during software qualification, test, system integration and test, or
system operation, which appears to be software related.

SPECIFICATION CHANGE NOTICE - A formal notification of a change in the
specification.

ENGINEERING CHANCE NOTICE - A document used to process changes to
baseline documents and which includes both notice of an engineering
change to a configuration item and the supporting documentation by
which the change is described.

SOFTWARE REQUIREMENTS REVIEW (SRR) - A review to achieve formal agreement
between the customer and the developer that the software requirements
specifications are complete and accurate.

PRELIMINARY DESIGN REVIEW (PDR) - A formal technical review of the basic
design approach. It is held after the completion of preliminary
design efforts but prior to the start of detailed design. See also
SYSTEM DESIGN REVIEW and CRITICAL DESIGN REVIEW.

CRITICAL DESIGN REVIEW (CDR) - A formal technical design review conducted
to ensure that the detailed design correctly and completely satisfies

-. .. the requirements. It is conducted after completion of the detailed
design but prior to coding. It establishes the design baseline.

D -8

:% .
_ '-''I-v'-

N. "%, %

TABLE D-3. Error Detection Characteristics (Cont).

TEST READINESS REVIEW (TRR) - A review conducted prior to each test to

ensure adequacy of the documentation and to establish a configuration
baseline.

FUNCTIONAL CONFIGURATION AUDIT CFCA) - Audit to verify that the actual
performance of the configuration items complies with the B-5 develop-
ment specifications.

PHYSICAL CONFIGURATION AUDIT (PCA) - A formal examination of the as-built
version of a configuration item against its technical documentation to

ensure the adequacy, completeness, and accuracy of the technical
design documentation.

UNIT LEVEL TESTING - Testing to verify program unit logic, computational
adequacy, data handling capability, interfaces and design extremes,
and to execute and verify every branch.

PRELIMINARY QUALIFICATION TESTING (PQT) - An incremental testing process
which provides visibility and control of the computer program develop-
ment during the time period between the Critical Design Review (CDR)
and Formal Qualification Testing (FQT); conducted for those functions
critical to the CPCI.

FORMAL QUALIFICATION TESTING (FQT) - Testing conducted prior to Functional

Configuration Audit to demonstrate CPCI compliance with all applicable
software specifications.

SOFTWARE INTEGRATION TESTING - Tests of the overall computer program used
to verify proper module interfaces with respect to sequencing, timing,and data compatibility.

SYSTEM INTEGRATION TESTING - The process of testing an integrated hard-
ware and software system to verify that the system meets its specified

" requirements.

OPERATIONAL FIELD TESTING - Test performed by operational personnel in
'" the operational environment. These can be the same tests performed

earlier during FQT.

-

D-9

'A

.

9"

.9.

'N

) >99*

/ .

* ;.~ .'~

.9':

0

APPENDIX E
.9.

- INDIVIDUAL COMPONENT RELIABILITIES ~.9.

.9'
9'

.9'

.0'

.9.,

.9' .~

.9.99.,

r.
~9

~9

4
*',.'1

E-1
"9.

a

9. 9.9.9 9!.S' 9'A(..f '~ % ~ 9%% ~ .~. .9....'*.... 9

'p.L

1.0 INTRODUCTION

Just as hardware components can be classified into component categories
such as resistors, capacitors, and diodes, software can be categorized into

• characteristic groups. In the case of software, however, the distinction

between groups is based on logical composition rather than physical makeup.

A direct relationship between the complexity of a computer program and its

reliability is intuitively expected. Likewise, it is intuitive that the
complexity of the software is related to its intended application (the pro-
grammatic complexity of the design is considered later). In other words,
even before it is designed or implemented, real time software is expected
to be more error prone than batch software where timing is not a critical
consideration. Similarly, historical evidence shows that programs with a

large amount of interface requirements experience higher failure rates than
those that contain minimal interfaces.

To determine individual component reliability (probability of success

on a single execution), the analyst must evaluate the characteristics of the

component itself as well as the characteristics of the process which will
be used to develop it. The methodology described in the appendix is derived
and explained in Section 5.0 of Volume I. The worksheets included in
Appendix I of this volume were created to simplify the application of the
formulas. As was explained earlier, the numeric values were statistically
derived from survey data collected during the study.

-E, -

-5--

""-"""" -""""""-..""""'"- :"""",''":"""""-'""":"

<--S -,-..- ; -- :-',:'---.,.. .-.. % ,-..;..-- -.-... . .':;4 . . v- . . :-v :-',".-'-'-- ..

2.0 METHODOLOGY

2.1 Overview

The methodology for predicting individual component reliability
v. involves the identification or calculation of its inherent reliability and

the application of an enhancement factor which is calculated as a function
of the development process characteristics discussed in Appendix D.
Specifically:

R R. + E(I R.)
,-"C I I -

and,

A
E = 1- D (1-A) (2)

where: Rc is the expected component reliability

Ri is the inherent reliability of either the process or the

component

E is the enhancement factor achieved by the application of error
avoidance and detection techniques

A is the single factor which describes the effect of applying one
or more error avoidance techniques during development

D is the single factor which describes the effect of applying one
or more error detection techniques during development.

2.2 Expected Component Reliability

The expected reliability of a software component is a function of the
inherent characteristics of the component and the characteristics of the

development process used to produce it. Unfortunately, there is insufficient
historical data available to isolate, with any degree of confidence, the
casual relationship between a specific characteristic or development tech-
nique and the resulting effect on component reliability. The term "reliabil-
ity" is used here to connotate the probability that the software component
will perform its intended functions correctly the next time it is executed.
That is, component reliability is defined as the probability of success in
a single trial. If it were possible to extensively exercise the component
in a controlled experiment, its reliability could be approximated by the
ratio of its successful executions to its total executions. In fact, if at
the end of the development cycle, oxtensive run data is available for a
particular software component, or that component has other dependable
failure data, we would bypass all of the following analyses and simply use
the known, or measured component reliability. However, prior to its
development, we predict component reliability by estimating its inherent
reliability and modifying that estimate by an enhancement factor related
to the manner in which it will be developed:

E-3

-, ,;', -,',~~~~~~~~~~~~~~~. .. ,...-......-. -.....-.-.-.-.-..-- ,
"2t,, '/ V,. ''e'V '2 , ''',..'-'.,e,+. - .,. '."j"- > ,". '","..".--,',',',-.- ' .'-'. '',. ,.,,L, x ,"--.,.,A h\ ,

R = R. + E(I R.) (3)
C I I

where: Rc is the component reliability (probability of success)

Ri is the inherent reliability of either the process or the
component (described in Section 2.3)

E is the enhancement factor achieved by the application of error
avoidance and detection techniques (derived in Section 2.4).

2.3 Inherent Component Reliability - Ri

There are several approaches to determine inherent software component
*reliability, each of which has both advantages and disadvantages. Any

measure which presents a ratio of successful implementations to total
implementations may be used in the prediction methodology. Some of the

more obvious measures are discussed below:

I Assume that Ri is equal to zero. This causes equation (3) to
reduce simply to the enhancement factor. At first glance, this
approach appears to be a gross simplification. It essentially
says that unless an effort is made to avoid and/or detect errors,
the software component will not work. We feel that this is the
most theoretically sound approach. However, it assumes that the +,"
developer has absolutely no knowledge of the product he is respon-
sible to develop. Even a casual knowledge of what he's supposed to . -
do can be considered an error avoidance technique. This assumption
carries with it the additional assumption that the checklist of
avoidance and detection techniques is exhaustive. It does, however,
define a lower bound on the reliability prediction when the devel-
opmental characteristics are known.

2 Assume that the inherent UNreliability is proportional to measured
fault densities of existing software which has similar characteris-
tics. This approach has the advantage of data availability. Al-
though there is a fairly wide range of measured values of faults
per line of code, there is sufficient historical data for an analyst
to make a sound engineering determination of the best figure to
use. Care must be taken, however, to distinguish how and when the
data used was collected. Many organizations do not begin counting
faults until the software is tested in the overall system while -
others begin recording failure data as soon as individual components

have completed unit test. The prediction methodology assumes that

Ri includes consideration of all errors made, not just the ones
recorded subsequent to integration testing. This method should
produce an upper bound on the reliability prediction due to the

fact that the actual number of faults in a software product cannot
be less than the number recorded.

E-4

6

"\ '" ' " + " '""'' " " " " " 6 - " - " • 5 " "" " ' "
'
'v." . .'-- " . , .,."-" " ,," . ,"-" .+ .. : . ."°".. .

4 ,t.4 -'" *' % •.' .+ . + -. , ,+ J • . . • - - .. -•. -- -- . . o ". +, -+" + . . %, •, , , -. . s •• %

3 Assume that the inherent UNreliability is proportional to a fault
density which has been interpolated from the range of historically
recorded fault densities. The interpolation could be based on the
same characteristics already discussed in Table D-1. Although such
a scheme has not yet been formulated, it is the opinion of the
author that one could be created and that it would provide the most
unbiased measure.

2.4 Enhancement Factor - E

Figure E-1 illustrates the relationship between inherent reliability,
avoidance effectiveness and detection effectiveness. The figure introduces
some terminology not previously described:

Ri Inherent reliability.

N Total possible variations implemented (all possible combinations
* of functions to be performed in all possible input domains).

NG Total variations inherently implemented correctly. These are
the variations that would have been properly implemented without

process enhancement.

NB Total variations inherently implemented incorrectly. These are
candidates to be avoided or detected.

Ii Number of variations being worked on during the i'th itera-
tion. These include the original errors to be eliminated plus
reworks of errors discovered on the previous iteration.

NGG Number of variations which "pass thru" the avoidance/detection
filters because they are already correctly implemented.

NBG i Number of previously incorrect implementations which were
successfully avoided on the current iteration.

NBB Number of previously incorrect implementations which were
neither avoided nor detected on the current iteration.

NBD1 Number of previously incorrect implementations which were

successfully detected and returned for rework.

A,D These are the error avoidance and detection factors.

The process depicted represents a typical software development opera-
tion. As a result of the inherent characteristics of the software to be
developed, errors will be made. The development team will attempt to avoid
making those errors by tht' application of software engineering techniques.
Recognizing that they will probably not avoid all errors, tests and other
detection techniques are implemented to locate and rework the faults.
Avoided errors will exit the process as corrected implemented variations.
Detected errors will be reworked by the process until they either are
avoided or escape the detection mechanisms. Eventually, all N variations
exit the process. Since the enhancement factor is an improvement factor,
it is defined as:

E-5

.4r _'

. .rr w ~ rr - f~~ W ..7W .r
Nvn nn.- -lu -

R c R + E(I-R 1) where, E -

Figure E-1. Relationship of R(I, R(C) , A and D

-E-6

wi

* ..* .. A-~%

NBG - Number of Corrected Bad mplementations I
NBC + NBB Total Number of Bad Implementations

It can be shown (a detailed derivation is presented in Section 5.0 of Volume
I) that the quantitative terms N--, including the original number of varia-
c ions N, cancel out leaving only the error avoidance and detection prob-

abilities. That is, the enhancement factor is simply a function of the

PROCESS characteristics:

E = A (5)
1 - DGl-A)

where: A and D are the error avoidance and detection factors described

in Section 2.4.2.

2.4.1 Effects of Inherent Component Characteristics

Recognizing that error avoidance and detection techniques are not
equally effective against all error types, it is desirable to weigh the
enhancement factor in accordance with the expected distribution of error
types which are inherently expected to occur based on the characteristics
of the software component being developed. Table D-1 lists the character-
istics which were investigated during the study. The numeric data presented
in Appendix I (worksheet No. I) represents the distribution of errors which
can be expected as a result of those characteristics.

If we define C(j) as the percentage of errors of type j to be expected

in the module being evaluated, it follows that:

C(j) = (6) J i:

i=l

-.V where: c(j,i) is the percentage of errors of type j caused
A-o by inherent characteristic i, (listed in Volume 11)

and N is the number of inherent characteristics applicable.

The enhancement factor is, therefore, more accurately defined as:

c(j)A(j)
E =(7)*[,D' ' LI -D(j) (1 -A(j))

j=l

where: A(j) and D(j) are the error avoidance and detection factors as
determined with respect to error type j.

E-7

. - . . %
% %.Z

2.4.2 Error Avoidance and Detection Factors

As described earlier, software development characteristics can be
* categorized in terms of their contributions to error avoidance or error

detection. Virtually any activity during the development life cycle can be
evaluated in terms of these two characteristics. The software reliability

prediction methodology uses measures of error avoidance and error detection

effectiveness which are based on the planned technical and managerial tech-
niques and methods used to develop the software under investigation.

It is generally accepted that certain development techniques are good
and will make the software better. For example, it is generally agreed
that structured approaches are good and will have a positive influence on

the quality and reliability of the product. Quantification of the effects

is typically attempted after the development is complete and the results
are rarely applicable to new projects. While the approach described herein

has a limitation due to the unavailability of detailed historical records,
the method is directly applicable to any software development venture. V,

Error avoidance effectiveness is calculated as the probability of not
introducing an error given the opportunity for making the error. Mathe-
matically, it is computed as unity minus the probability that a hypothetical

error will not be avoided by any of the techniques employed. If we define
A(j) as the probability of avoiding errors of type j, it follows that:

i=N

A(j) = 1.00 - 7 (1.00 - a(j,i)) (8)

where: a(ji) is the probability of error type j being avoided by
the application of technique i, (listed in Volume 11)

and N is the number of techniques employed.

Error detection effectiveness is similarly calculated as the prob-

ability that an existing error will be discovered and corrected. Again, it K
is mathematically computed as unity minus the probability that a hypotheti-
cal error will not be detected by any of the techniques employed. If we
define D(j) as the effectiveness of detecting errors of type j, Lt follows

that:

i =N

D(j) = 1.00 - 7T (1.00 - d(j,i)) (9)

where: d(j,i) is the probability of error type j being detected
. by the application of technique i, (listed in Volume II)

and N is the number of techniques employed.

E-8

V-- .

%,. . ..,-
"

' - - " ." " " " " , -

%, %- %

3.0 USE OF THE METHODOLOGY

After the inherent and developmental characteristics of the individual
software components have been identified (see Appendix D), the calculation

of individual reliabilities is relatively simple. Appendix I of this

report includes worksheets designed specifically for this purpose. The
worksheets are self-contained and may be used directly without understand-

ing of the derivation described above. The numeric values assigned to the
factors listed were derived from the results of the survey performed as a
part of this study.

4E-

N.>"

,4-- -

.E-9,

,4.f

"N
J. S

'N'

P.

9N4

4,

V.'

4

'-CIN.

-V.

"N.

"S

APPENDIX F

4,
OVERALL SOFTWARE RELIABILITY

N,.

~,N.

IN.

N-

N.

-'N.

-5

-V..

N,

- - 'N

F-i
5-

'"'-N- N,
-N~ N,.... *~*~*~* ~ - -, 2

* % N
4

~ ~ '~~->~ - -~-~' 2

1.0 INTRODUCTION

This Appendix describes and derives the technique used by the reli-
ability prediction methodology. It assumes that the analyst has already
identified the software components (modules) that make up the software
subsystem, that their individual reliabilities have been calculated, and
that a mission thread analysis has produced inter-module path
probabilities. The method described utilizes mathematical methods usually
associated with a Markov process including a matrix inversion technique.

The rationale for this approach is based on the recognition that soft-
ware reliability is not only a function of the reliabilities of its collec-
tive modules but also a function of the execution sequence(s) of those
modules. The probability of a module failing is a conditional probability
that it will fail GIVEN that it was executed. This is essentially a duty
cycling effect.

{ t. Hardware duty cycling effects are generally considered in reliability "
- predictions at the highest level only. Individual components within a

circuit are all operational or they are all dormant. Since each component
*is essential to the continuity of the circuit, duty cycling effects have no

meaning at this level and can be ignored.

Duty cycling effects, however, are probably the most critical deter-
minant of software reliability. Software cannot fail unless it is being
utilized. Its non-operating reliability is one. A logic path does not

exist during a time period (albeit microseconds) when it is not being
utilized. The functional flow of control through a computer program is, in
fact, its reliability block diagram.

*---

_.0 Z,
.' . .. ,.

a..,

:F-2

' ..-- '" -

- ' ,+" " + ,'+" i d " | : * I 11 '' i""
'

" :" :+" +- :"
'+

.'. .". .
'

..'..". ." " '-

2.0 MARKOV PROCESS

It is possible to predict overall software subsystem reliability by

combining the individual module reliabilities in accordance with their

expected usage during the application or mission under analysis. This is

accomplished by use of a Markov process as suggested by Cheung [1]. The

approach is based on the fact that individual software components contri-

bute to the overall reliability when, and only when, they are executed.

The flow of control between components of a software program can be

considered a Markov process if we assume that the component reliabilities

are independent. Suppose a given software program has n components. It is

necessary to know the reliability of each component and the probability of

going from one component to another. The component reliabilities are in

the diagonal matrix R and the path probabilities are in the matrix P;

i.e.,

R 011 .. 0P 12 I n

U R 0 ... 0 P2 P22

R= 0 0 R3 0 P p 3 1 P32 P3n

0 0 0... R p p P
L n Pnl n2 nn

where R(i) is the reliability of component i and P(ij) i the probability

that control is passed from component i to component j.

The matrix Q is the product of the matrices R and P. The ij'th

entry represents the joint probability that component i will execute

correctly (R(i)) AND pass control to component j (P(ij)).

R1*P 1 RI*P12 RI*PIn

R2*P R2*P R2*P
2 21 2 22 2 2n

Rn*Pn1 Rn*Pn2 R nn*P nn

By considering each component to be a state and by defining two
additional states, C and F, for correct program termination and failed
termination of the program, respectively, a Markov chain can be constructed

with n+2 states. The transition matrix, T. is form'd by adding two rows
and two columns to the matrix Q. The additional two rows and columns arc_
for the states C and F. The matrix T is defined as tollows:

F--3

"-I

~ ,.
:<.:: v.*

1 2 n C F

1 " I I RI*P12 R1*PIn 0 I-RI

2 R2*P21 R2*P22 R2*P2n 0 I-R 2

T=
n R*;P RP . . RP R 1-R

n nl n n2 n nn n n '

C 0 0 . . 0 1 0
F 0 0 . . . 0 0 1

The ij'th entry of T is the probabilty ot going from state i to state

j in one step. The ij'th entry of T*T is the probability of going from

state 1 to state j in two steps. The ij'th entry ot T*T*T is the prob-
ability of going from i to j in three steps. The reliability of the

software is the probability of going from state I to state C iU x steps oi

less as x approaches infinity. Thus, to compute this reliability, we would

need to calculate

i=X .

Ti, as x approaches infinity.

There is a simpler way of computing the reliability of a program using

the matrix Q. Let

S = I + Q + Q2 + Q3 + Q4 +

where I is the identify matrix.

Note that:

(I- Q) * (1+ Q + Q + Q + Q4 + .) = Q + Q + Q +

2 3

-Q-Q -Q

and so,

I'Q 2 3 4 Q1I + Q + Q +Q +. .=(I -Q)-

It follows that,

S = (I-

Letting S(ln) be the entry in the first row and n'th column of S, the
A reliability of the program for a single cycle, R(c), is given by

R(c) S(ln) * R(n).

F-4

S %........ , .

Several important points should be made here. First, since the
calculation of software reliability was computed based on operational path
probabilities, the prediction made is limited to the scenario or mission
described by those probabiiities. Secondly, the value computed is cycle
based. That is, it represents the probability of successfully completing
the software one time. Many operational missions require the repeated
cycling of a computer program throughout a given mission time. Equally
important, software reliability must be expressed in a time-based reference

if it is to be combined with hardware reliability to arrive at an overall
mission reliability.

%7'

* ii F-5 T

4-."

3.U USE OF THE MARKOV PROCESS

The analyst must essentially accomplish the steps defined above.

Having already determined the individual module reliabilities (Appendix E)
and having already accomplished a path analysis (Appendix C), the matrices
R and P can be constructed. The R matrix is simply a diagonal matrix
containing the individual module reliabilities. That is R(nn) equals the
reliability of the n'th module. All other entries in the R matrix are set
to zero. The P matrix contains all the path probabilities. In the first
row the analyst must list the probabilities of module I passing control to
each of the modules (itself included). In the second row, the same is

' "listed with respect to control leaving module 2.

Multiply R*P. Since R is a diagonal matrix, this step can be done by
*inspection simply by multiplying every entry of row i in P by R(ii).

The matrix product R*P is referred to as the Q matrix. The next step
is to substract Q from the identity (diagonal matrix of l's) and then
compute the inverse of the I-Q matrix. Call it the S matrix. This is the

*only step which is computationaly difficult. Matrix inversion is difficult

for all but the smallest problems. It is highly recommended that this step
of the methodology be computerized.

The overall software reliability can be easily calculated from the S
matrix. Since S(n) is the probability of reaching module n, and since n

is the last module, the product of S(n) and R(n) is equal to the overall
sottware reliability.

F-6.

% %

%.

.~- .-

~1.

4-iA

.4

I,'.,
~

A'.

APPENDIX C

DETECTION AND WARNING SYSTEM

.~ .. ~

.4 A A

'A

4
B'.

B'.

C- 1

'A.

~ "A.
~ A

4
...........................

S:.~.:

-,p'.-~..

-~ .-

-N,

A-........
* . ~. N V . *. -. .

A,.............

"%

.9 V 1.0 INTRODUCTION

To illustrate the application of the software portion of the combinled
Hardware/Software System Reliabiity Prediction Methodology, a relatively
straightforward example is presented.

.4--2

.4%

2.0 THE PROBLEM DESCRIPTION

The application is a simple search and warning system which continually
scans an area of the atmosphere, evaluates returns, and issues a warning
message when a detected object is found to be hostile. The hardware por-
tion of the system consists of devices which can be directed to scan an
area, perform an acquisition pattern or track a specific path as commanded
by the computer. The computer software is required to analyze returns,
issue move commands to the hardware and report hostile targets.

In the search mode the software is required to accept positional data

from the hardware, correlate the individual returns and perform preliminary
analysis of the potential target. If no target meets a preset correlation
threshold or if none of the targets meet other threat conditions, the
hardware is directed to remain in the search mode. If a potential target
is detected, the software must initiate an acquisition mode.

In the acquisition mode, the software will be receiving returns from
the hardware in accordance with a pre-defined pattern. It must identify

those returns which correlate with the target being acquired and computer
trajectory data for the target. When the system is able to predict the
next position of the target within a given error tolerance, the software
must issue a command to initiate track mode. If the system is unable to
acquire the target within a prescribed time, acquistion is aborted and the
operation is returned to the search mode.

In the track mode, the software issues pointing coordinates to the
hardware, evaluates the returns, updates its trajectory estimates and
evaluates the target's predicted launch and impact points. If the target
is untrackable or if it is found to be non-hostile based on the trajectory
analysis, the system is directed to return to the search mode. If it is
found to be hostile and its predicted launch and impact points can be
computed within a pre-determined confidence range, a message is sent, track
is broken and the system is returned to the search mode.

The system is designed to be operational at least 95 percent of the

tLime. That is, it may be shut down for 72 minutes every day for pre-
ventative maintenance. When the operator issues a shutdown connand, the
software will perform sdlf-checking maintenance routines and issu' the
necessary coummands to shut down the entire system. During operation, the

software portion of the system must achieve a 90 percent reliability.

•77

G. -" 3'

6%

3.0 APPLYING THE METHODOLOGY .

3.1 Preliminary Analysis

Based on the system requirements definition, a functional decomposi-
tion is accomplished, and it is determined that software design will
consist of five functionally independent modules: search, acquire, track,
report, and maintenance. The top level functional flow chart is shown in
Figure G-l. As can be seen from the flow diagram, each module has a single
entry point and one or more possible exits. The logical flow from one
module to the next is determined by various decision points within each of

the modules. The functional design of the modules as well as the entry and
exit decisions are extracted directly from the performance requirements
listed in the previous section.

Next, it is necessary to predict the individual reliability of each of
the functional modules. A context flow analysis reveals inherent charac-
Leristics of the data and control flow within each module. Inherent pro-

cessing analysis identifies those aspects of individual modules which can
be expected to affect its reliability. Considerations of its size, appli-
cation category, language level, etc. can be compared with historical data
of similar applications. Likewise, the developmental characteristics

affect the manner in which errors are either avoided or detected. The
worksheets presented in Appendix I of this volume are used to predict
individual module reliabilities. Figures G-2a through G-2d demonstrate the
calculation of the reliability for the track module. A separate worksheet
must be accomplished for each module in the system.

Next, a functional thread analysis is performed to determine the like-
lihood (probability) of each possible path being executed. This is accom-
plished by analysis of anticipated scenarios coupled with the functional
design of the software. In essence, the analyst must predict how often
each of the switching decisions will be made. For example, the require-
ments specified that the system would be shut down for 72 minutes per day
for preventative maintenance. Therefore, the probability of going from
the search mode to the self-check mode is equal to 0.05 (72 minutes in a
1440 minute day). Other probabilities, such as the percent of time that
acquisition mode will be entered must be determined by the same analytical
threat assessments that were used when it was determined that the system
was needed in the first place.

Finally, the module-to-module path probabilities and the module reli-
abilities are entered on the functional flow diagram (Figure G-3) for later
analysis. Note that in Figure G-3, the module names have been replaced by
module numbers to facilitate the mathematics that are performed in the next

section.

Armed with individual module reliabilities and path cxecution prob-

abilities, it is now possible to compute the conditional probabilities
that a module will operate successfully given that it was executed. It
should be obvious that there is essentially an unlimited number of

G-4

possible paths, and consequently, an unlimited number of calculations to be
made. Fortunately, the scenario can be described by a Markov process which
duplicates the transitions from one state to the next. Furthermore, once
the mathematical transition matrix has been established, it can be manip- -:

ulated to evaluate the infinite sum of conditional probabilities via a
single matrix operation. The section that follows, utilizes the results of
the path analysis and module reliability analysis to construct the Markov
transition matrix and determine the reliability of the overall software
component of the system.

3.2 Mathematical Computations

Based on the preliminary analyses of individual module reliabilities
and the functional path analysis, we can summarize the problem using
mathematical shorthand as follows:

R I = 0.98 Reliability of module 1
R2 = 0.97 Reliability of module 2
R 3 = 0.96 Reliability of module 3
R4

= 0.95 Reliability of module 4
R 5 = 0.999 Reliability of module 5 .

The path probabilities depicted on the flowchart in Figure G-3 can
be represented as a matrix, P as follows:

0.8555 0.095 0 0 0.051
0.45 0.45 0.1 0 0

P = 0.45 0 0.45 0.1 0
1.0 0 0 0 0

0 0 0 0 0

The entry in the i'th row and j'th column represents the probability of
module i passing control to module j.

It we were to attempt to evaluate all possible conditional probabili-

ties, the number of calculations would be astronomical. The following is a
very short list of Some of the possible paths:

1-5 1-2-1-1-5 1-2-3-3-1-5
1-2-1-5 1-2-3-4-1-5 1-2-3-3-1-2-2-1-5
1-2-3-1-5 1-2-1-2-1-5 1-2-2-2-3-4-1-5.

Computation of even a single path requires the multiplication of all the
path probabilities and module reliabilities involved in the path. For
example, consider the path 1-2-3-4-1-5. The conditional probability,
C, that it will be successfully accomplished is computed as follows:

C = (R) (P 2)(R2)(P2 3)(R3)(P34)(R4)(p4 1)(R)(P 15)(R5)

= (0.98)(0.095)(0.97)(0.1)(0.96)(0.1)(0.95)(1.0)(0.98)(0.05)(0.999)

= 4.03E-5.

G-5

%7 5- |

At first glance it appears that this value is extremely small. However,

this path represents only one of the essentially unlimited number of

possible paths.

The reliability of the overall software subsystem is the sum of the

conditional probabilities of all the possible paths. If the program is
structured, it may be possible to compute the overall reliability by hand
despite the fact that there may be an infinite number of paths. This

would be accomplished by assuming that the effects of certain paths are
negligible. Even so, the task is extremely tedious. If the program is
not structured, the task of computing reliability by hand borders on the
impossible.

The alternative is to use the Markov analysis in a manner described

by Cheung [I]. Using the matrix P as defined above and the reliability
matrix R defined as:

-0.98 0 0 0 0
.j- 0 0.97 0 0 0999

R 0 0 0.96 0
0 0 0 0.96 0

r.." 0 0 0 0 O. 99"r

We compute the matrix Q = R*P. The matrix Q then is

0.838 0.093 0.000 0.000 0.049-

0.437 0.437 0.099 0.000 0.000
Q 0.433 0.000 0.432 0.096 0.000

0.950 0.000 0.000 0.000 0.000
o.000 0.000 0.000 0.000 0.0001

The matrix Q transforms the success/failure status of the software

from one slate to another. In order to determine overall software
reliability, it is necessary to sum all possible transformations; i.e.,

S=I+ Q + Q2 + Q3 + Q4 +. + Q

where I is the initial state (the identity matrix) and i is unbounded. Let
this sum be given by

n= 0,
* n-

-Z '~ Qn .

n=O

It can be shown that the sum of infinite terms can be evaluated as the
i-verse of the matrix (I - Q); i.e.,

S (I Q)-l

G-6

-I' -, . ,""""'"" -"""- . .. : "''" ''' - . - - . - -''" "" '' - - . . .- . ' .. "" '' . - " """' '' "

W' . ,-, -' '., " . . - 'I
', , , ,,

fi " - ,''-"-
"

'" " " " " "' '-'* ° "
" ' .

"- - ° - " " " ',"'- • " "' ', ' "" " " ".. " "* ' "

For this particular example, the matrix is:

13.294 2.196 0.375 0.036 0.6511
12.406 3.824 0.653 0.063 0.608

S = 12.246 2.023 2.106 0.202 0.600
12.630 2.087 0.356 1.034 0.619 -

0 0 0 0 01

Evaluation of the matrix inversici described above can be very tedious
when many modules are present. It is suggested that this step be

accomplished on a computer. Figure G-4 illustrates the printout used to

generate these sample results.

The reliability ot the overall software subsystem can be easily

computed as the probability of transferring control from the first node
to the last node multiplied by the reLiability of the last node. In this
example:

R(s) = S(1,5) * R5
= (0.651) (0.999)
= 0.651.

This example represents the probability that the software will perform .

all of its mission functions for a full day. It can then be combined with
hardware reliability measurements to determine overall system reliability.

' 4

;;, t.x'

f..'-.

7-77

a - e Xa . Z * a-

4.0 USING THE RESULTS

Having predicted the software mission reliability, an assessment of

its acceptability must be made. If the prediction is unacceptable, a
decision must be made as to where (in the system) improvements can be
realized. In the case of software reliability improvement, the methodology
can be utilized to test the effects of vacious design, development and
testing philosophies by incorporating the pi factors associated with a
proposed approach and reaccomplishing the mathematical computations. It

8." can be used repeatedly to test tradeoffs before a commitment is made.

Additionally, the methodology can be used to periodically re-calculate
reliability predictions and refine them as the Jevelopment progresses and
better estimates of module reliabilities and path probabilities are avail-

able.

2""S

-. °.

G-8

.- .,""..

START
D & W SYSTEM

SEARCH

PREVETATIE Y PRFOR

MAINTENANCEACIECE

ACTRACE

YY

44. TRACK-

N'. BREA

N*
ACQUISITION~S~.

I "r.

W4KSHEET No. 1

INHERENT CHARACTERISTICS - C(l) NOMINAL CASE MODULE: --

FACTOR (checK) C(II C(2) C(3) C(4)

PREDOMINANTLY CONTROL .372 .299 .19 .136

PkEOOMINANTLY REAL TIME .308 .308 .203 .16

PkEDOMINANTLY INPUT/OUTPUT .205 .256 .42 3 I.

PiEDOMINANTLY INTERACTIVE .270 .342 .264 .121

PREDOMINANTLY COMPUTATIONAL .277 .169 .133 .411

MANY DISTINCT OPERATIONAL MISSIONS .385 .299 .175 .141

SEVERAL VARIATIONS OF OPERATIONAL MISSIONS .362 .798 .178 .167

SINGLE OPERATIONAL MISSION .323 .251 .194 ..1.

MANY OPERATIONS REQUIRED - HIGHLY INTERRELATED .385 .316 .151 .14

MANY OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .372 .236 .187 .191

FEW OPERATIONS REGUIRED - HIGHLY INTERRELATED .346 .316 .168 .177

F.w OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .343 .240 .182 .216.

EXTENSIVE HARDWARE INTERFACE REQUIREMENTS .262 .42 .209 .,.,

MINIMAL HARDWARE INTERFACE REQUIREENTS .311 .28 .214 .175

-. EXTENSIVE SOFTWARE INTERFACE REQUIREMENTS .284 .417 .175 .,113

"I- MNIMAL SOFTWARE INTERFACE REQUIREMENTS .307 .275 .215 .IBX

EXTENSIVE HUMAN INTERFACE REQUIREMENTS .270 .341 .267 .112

MIN;MAL HUMAN INTERFACE REQUIREMENTS .322 .269 .213 .!76

WIDE RANGE OF ERROR-PRONE INPUTS .303 .236 .283 .176

W:'; RANGE OF ERROR-FREE INPUTS .304 .253 .247 .197

- NARROW RANGE OF ERROR-PRONE INPUTS .313 .236 .259 .180

NARROW RANGE OF ERROR-FREE INPUTS _ .311 .237 .248 ._00

SUM OF THE VALUES CHECKED: "'

AC,,E SUM DIVIDED YY .31(Y . 73
THE NUMBER OF CHECKS: ----

C(I) C(2) C(3) C(41

Figure G-2a. Track Module Worksheet No. I

"-G-1

Zi

WORKSHEET No. 2 3
ERROR AVOIDANCE TECHNIGUES - Al) NOMINAL CASE MODULE: --

FACTOR (checK) !-All) :-A(2)

INDEPENDENT GUALITY ASSURANCE ORGANIZATION - .646 .''3 .69?7 .09-

INDEPENDENT TEST ORGANIZATION .696 .662 .651 .646

INDEPENDENT VERIFICATION AND VALIDATION (IVhV) .631 .661 b48 622

USE OF A SOFTWARE SUPPORT LIBRARY .779 .757 .772 .757

USE OF A SOFTWARE CONFIGURATION CONTROL BOARD .77. .679 .777 .831

THJROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN .672 .6 2 .668 678

RIGIDLY CONTROLLED SYSTEM REGUIREMENTS SPEC .646 .617 .677 .69S

RIGIDLY CONTROLLED INTERFACE DESIGN SPEC .698 .466 .630 .

RIGIDLY CONTROLLED SOFTWARE REGUIREMENTS SPEC 99 .5 .605 .634 .b6,'

RIGIDLY CONTROLLED SOFTWARE FUNCTIONAL DESIGN SPEC .637 .612 .655 .o56

RIGIDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC .617 .608 .610 .597

- REGUIREMENTS TRACEABILITY MATRIX .645 .681 .738 .771

STRUCTURED ANALYSIS TOOLS .663 .694 .717 .742

PROGRAM SPECIFICATION LANGUAGE (PSL) .682 .710 .746 .752

PROGRAM DESIGN LANGUAGE (PDL) .643 .687 .7." .14

HIGH ORDER LANGUAGE (HOL) .674 .706 .698 ell

HMERA-CHICAL TOP-DOWN DESIGN .617 .633 .6E!

STRUCTURED DESIGN .619 .640 .677

SINGLE FUNCTION MODULARIZATION .625 .674 .6.-

STRUCTURED CODE .629 .695 .720 h63

USE OF AUTOMATIC MEASUREMENT TOOLS .761 .790 7,

USE OF AUTOMATIC TEST TOOLS .o9c .;:8 .712 .69"

PRODUCT OF THE VALUES CHECKED: a_i , (-7 . _3

ABOVE PkODUCT SUBTRACTED . __
FROM ONE: - - • - • - -- -------

d .All) A21 C

Figure G-2b. Track Module Worksheet No. 2

w. 11

. .%-..

WRKSHEET No. 3

ERROR DETECTION TECHNIQUES - 0(i) NOMINAL CASE MODULE: -

FACTOR (checK) 1-D(l) I-D(2) I-D(3) I-D(4)

FkEaUENT PEER WALATHROUGHS .548 .595 .621 .607

INFREQUENT PEER WALXTHROUGHS .749 .775 .805 .797

FUEOUENT PROGRESS REVIEWS .7t5 .780 .765 .802

- INFREQUENT PROGRESS REVIEWS .890 .890 .898 .912

FREQUENT QUALITY AUDITS .712 .731 .733 .75t

INFREQUENT QUALITY AUDITS .862 .868 .880 .8B2

USE OF SOFTWARE PROBLEM REPORTS PRIOR TO POT .666 .668 .703 .66''.

USE OF SOFTWARE PROkEM REPORTS SUBSEQUENT TO POT .735 .742 .748 .742

USE OF SOFTWARE PROBLEM REPORTS SUBSEQUENT TO FOT .75 .716 .763 .754

USE OF SPECIFICATION CHANGE NOTICES (SCN's) .807 .779 .611 .82?

USE OF ENGINEERING CHANGE NOTICES (ECN's) .791? .769 .802 .818

".. SOFTWARE REQUIREMENTS REVIEW (SRR) .686 .669 .720 .766

PREL MINARY DESIGN REVIEW (PDR , .714 .h79 .721 .73

CK'TICAL DESIGN REVIEW (CDR) .677 .672 .695 .738
TiST READINESS REVIEW (TRR) .799 t66 .781 .797

F.:CTIONAL CONFIGURATION AUDIT (FCA) .816 .78? .792 .8117
PiYSICAL CONFIGURATION AUDIT (PCA) .851 .826 .823 .85'

INFORMAL UNIT-LEVEL TESTING .566 .682 .655 .544

PhELIMINARY QUALIFICATION TESTING (POT) .639 .659 .682 .679

FORMAL QUALIFICATION TESTING (FGT) .686 .700 .711 .698
SOFTWARE INTEGRATION TESTING651 .550 .618 .666

SYSTEM INTEGRATION TESTING .670 .87 .633 .608

OPERATIONAL FIELD TESTING .673 .648 .637 .666

PRCDUCT OF THE VALUES CHECKED: 7 * -W G-

ABOVE PRODUCT SUBTRACTED _ , ,O ,5 ("/' - FROM ONE: --- p- "--- -
FON:D(I) D(2) D(3) D(4)

Figure G-2c. Track Module Worksheet No. 3

G-12

9. 4fs 6t
,-." ", 2-

.9.

WORKSHEET No. 4

MCDULE RELIABILITY CALCULATION - NOMINAL CASE MODULE: ------- ------------------

A(1)*Ch) substitute appropriate Ali) and C(U) calculate "- .
AADC (i) ------------------------. . .--....------..---------

1.00 - D(i)*(1.00 - A(i)) substitute appropriate A(i) and 0(1)

AD() (1)#C (1) 0 ~i

ADC(1)

--------- -------------------- ------------------------

1.6)0 D(2);[I.00 - A(1)" 3_ .

A(3),C(3) . v.

------------------- - ---

A (,)* C (4) 4 --(- ------

SUM ALL THE ADC TERMS --

Figure G-2d. ,Track Module Worksheet No. 4

(copy)

IIt

G-13
' CALCULATED ENHANCEMENT FACTOR NOMINAL CASE ---

- - - -V ~..V..

J. -.

START D&W SYSTEM

RO .98

Y 5

00 R 5 .0.999

0.95 NSTOP

Y2

.0.

.0.1

4'4'

-0.9

0.5.

:90.1

MODULE RELIABILITY MATRIX (h):

0.SE0 0.970 0.960 0.S50 0 .9i

PATH MATRIX (P):

0.855 0.095 0.000 0.000 0.0V0
0.4L0 0.450 0.100 0.000 0.000
0.450 0.000 0.450 0.100 0.000
1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000

CONDITIONAL PATH MA.TRIX (6 =kxP):

0.8':8 0.053 0.000 0.000 0.04S
40 0.43) 0.437 0.097 0.000 0.000

0. 412 0.000 0.431 0.056 0.000
0.50 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000

.DENTITY - 6 MATRIX (W '-!

0.162 -0.09-' 0.000 0.000 -0.04S
-0.42) 04b 3 -0.09)/ 0.000 0.000
C4: " 0.000 0.568 -0.06 0.000

-0.950 0.000 0.000 1.000 0.000
*10.000 0.000 0.000 0.000 1.000

S CLUTION MATRIX (S z NVEhEE~

'2.54 2.196 0.37t; 0.026 0.6.1
12.406 3.E 4 0.6!52 0.06': 0.60E .
12.246 '..022. 2.106 0 .202- 0.600
12.630 2.087 0.356 1.02:4 0.619 .

0.000 0.000 0.000 0.000 :.000

SOFTWARE RELIABILITY (R(o)IS(I,n)) 0.651

Figure G-4. Co uer upu

4)4

% -

- r,~.

JVd'

- 4

&

4

b

APPENDIX H

ASSAULT BREAKER

-p

p.-.

~

-'.. -
p.. ~

H-i

4
* ... *. *...

................................
.............

4--.
.. . . . *-...-

~***~********** -. ** .. . ~ ~

* * . .* - . . ., 'p -. *....* . ..

J- o

1.0 INTRODUCTION

The Assault Breaker project was chosen to illustrate a typical appli-

cation of the reliability methodology to a real-time system. Assault
Breaker is a recently completed Martin Marietta program which involved a
tactical missile and its controlling software.

. . ,.

U".

.. "I..

"IA. '

A,

-% . "

2.0 THE PROBLEM DESCRIPTION

The Assault Breaker software was tasked with launching the missile,

steering it to a target area and dispensing submunitions. The hardware
portion of the system interfaced with the software by providing positional i-'

• data and by accepting guidance commands. Ko,.

The flight software was decomposed into nine distinct functions or
modules each requiring execution periodically as shown below:

1. Program initialization 1 time
2. Executive control program 200 Hz
3. Digital autopilot 100 Hz "".

4. Flight control 10 Hz
5. Navigational filter 10 Hz
b. Antenna select 10 Hz

7. Target processor 10 Hz

4. 8. Dispense 10 Hz
J 9. Steering (Guidance) 10 Hz

a. Launch initialization
b. Initial turn steering
c. Midcourse steering

d. Terminal steering.

Since the software was required to operate in real-time, an extensive
analysis was performed to determine its best overall structure. A brief

recap of that analysis follows.

Analysis of the missile rigid and dynamic body bending mo'ies dictated
a digital autopilot operating at a 200-Hz rate to maintain misile stabil-
ity. Further analysis of the dispense accuracy requirements resulted in
dispense commands being initiated at a 200-Hz rate and being tuned accur-
ately from time of launch including missile variations from the nominal
flight trajectory. Maximum flight from launch is 180 seconds.

Launch control and self-test, launch initialization, and program
initialization modules are all completed prior to launch when none of the
missile flight programs are operating. These modules have lower priority
for reliability as there are many checks built into the system operation to
verify the accuracy of the missile prior to launch.

Performing a timing and loading analysis of the program function. as d
applying these timing results to the reliability model resulted in a very
poor reliability value for the overall program. The accuracy requirements
with the supersonic stability requirements dictated an accurate time line

control of function completion to eliminate phase delay errors in the
uncertainty of the time that any particular computation was completed.

The results of this analysis led to the selection of a structured

executive format rather than a task driven executive. Using this

,H-3

9e~'is,?:! :i

*.¢. ,

structured technique with the timing analysis, the functions were decomposed
into modules to be performed in a time controlled sequence. The a,.topilot
function was a known function in this structure which was required to be
performed every five milliseconds (200 Hz). Worst case analysis of the
timing of this module was shown to be 700 microseconds. The executive
module was designed not to exceed one millisecond and actually used 720

microseconds worst case.

Each ot the functions was decomposed into submodules with a design

goal of one millisecond and not to exceed 1.5 milliseconds. The result was
- that of each five millisecond period, the worst case time usable required

to complete all modules was less than 3.5 milliseconds. This resulted in a

probability ot one that each module would be completed in its assigned time
slot, providing no hardware errors occured. The executive program was

designed to verify that no real-time module was in operation when the five

millisecond real-time clock interrupted.

By structuring the minor cycles of five milliseconds into 20 cycles to
a major cycle (100 milliseconds) the accuracy constraints of the missile
requirements were met.

H--

5. .'. ,r.

*1'

Si'- '-.\- / ", ," " " " -1 '" " -, ,-"... -'' - ' -"- " ,,' .: - . L,, .

3.0 APPLYING THE METHODOLOGY .2.
3.1 Preliminary Analysis

Figure H-i depicts the final functional flow diagram of the flight
software. It is representative of many real-time application programs
which have been constructed in a top-down manner.

Figures H-2a through H-2d depict the worksheets used to determine the
reliability of the Antenna Select module. It should be noted that on the
Assault Breaker project, many reliability enhancing techniques were
employed. This resulted in relatively high individual reliabilities. Each
of the modules was evaluated with the following results:

No. Module Name Reliability

I. Program initialization 0.999
2. Executive control program 0.996
3. Digital autopilot 0.990
4. Flight control 0.987
5. Navigational filter 0.998
6. Antenna select 0.982
7. Target processor 0.992
8. Dispense 0.999

9. Steering (guidance) 0.992.

Functional thread analysis was relatively easy. As was described
above and depicted in Figure H-I, the system is initialized one time; and
subsequently, the Executive module directs the logical flow to the Auto-
pilot and then to one of the six functional modules. Each of those modules
returns control to the Executive. Investigation into the timing analysis
that had been performed revealed that several of the modules required more r
than one cycle to complete. Specifically, each module was allocated a
specific number of cycles for completion of its functions. The path
probabilities used for the reliability analysis were therefore computed as
the proportion of a 20-cycle period that was allocated to each module:

No. Cycles Path Probability
No. Module Name Per Period From Autopilot "

4. Flight control 7 7/20 = 0.35
5. Navigational filter 3 3/20 = 0.15
6. Antenna select 1 1/20 = 0.05
7. Target processor 3 3/20 = 0.15
8. Dispense 1 1/20 = 0.05
9. Steering (guidance) 5 5/20 = 0.25.

The only other path probabilities to be considered involved determin-
ing how to stop the program. Obviously, with a missile system, the computer
sottware will continue processing until the missile is destroyed. To alle-
viate the possibility ot endless looping (in the m zhodoiogy), a ticticious

H-5

.. ~ - -A,

module was created. It was labeled as the Termination module on Figure l1-I
and was arbitrarily assigned a reliability of 0.999 to minimize its impact.
on the analysis. Since it is only executed one time, its effect to the
analysis is negligible.

The next major consideration to be made was to probabilisticalLy

define the path which leads to termination. Review of the functional

decomposition revealed that the software performed under four specific
modes of operation. Since these mode changes are the points where rela-
tively drastic changes in the input domain are seen by the sottware, it was
decided that the path probabilities from the Executive should be computed
based on the five (including Termination) mode changes accomplished during
the intended mission. That is, the value of the path probability going
trom the Executive to Termination was set to 0.20 (one mode/five possible)
and the path to the Autopilot was set to 0.80 (four modes/five possible).

Finally, the module-to-module path probabilities and the module
reliabilities were entered on the functional flow diagram (Figure H-3)
for later analysis. Note that in Figure H-3, the module names have been
replaced by module numbers to facilitate the mathematics that are per-
formed in the next section.

Armed with individual module reliabilities and path execution prob-
abilities, the reliability prediction methodology was applied exactly as
already explained in Appendix G. The output of the analysis is shown in
Figure H-4. The predicted reliability for the Assault Breaker Flight
Software was calculated to be 0.911 for the mission scenario described
above.

Although there has been insufficient test points to establish the

validity of the prediction and hence the validity of the methodology, the
little data that is available is quite interesting. Assault Breaker t1,-w
103 flights during demonstration testing. There was ony one taiILurt, and

tue computer software was not charged. However, the correction to ih,'
problem was accommodated by a software enhancement Lo perform addit j,1.nil

checks prior to launch. If we surmise that the euhaucenclut shou I t 11a y'"

N4. been InI the original soitware design, we would be torced to charg,, th.

sottware tor the failure, yielding a software 11ssion r alh I- i tyVii *.!

0.90, .almnost exactly what the methodology predict-d.

9.-...

V-.

g%: .,',

--.- -6

%-. ' - -7 , '- --.- . - :,----,-- .:,:.:.:.:.:.:,;.; .¢-.,., ,'.' ---, ' < -,:,;.'.., .",..-,.,. .-.-. ,- -, . ::
%-, : ." ", ." --- ', : ", ; ', "'.-'.- -''-. _ :.% '¢ . .-.. -...--. -'--.'-.-''-."''' .'-.--'-

.,L -. ' ,' -,-''"-. .-" , - .' * , ¢ .- .' . % -.- .'','',,- .,' . '._. ' _._.- . '.:r..'. . . . ,'. -"%

LAUNCH ASSAULT BREAKER

INITIALIZATION

* EXECUTIVE

PCA N~yANTENNA ROCESS MIEN TE

Figurt- H-1. Funct i ona I Fl w Dii rim

fl-7

fl.nn ,-- - -- o.....,.n.,~rr ~..~,.

WERKSHEET No. I h MDUE: --- bi fiI$--- --------
INHERENT CHARACTERISTICS - C(j) NOMINAL CASE MODULE: .

FACTOR (checK) C(Ii C(2) C(3) C(4)

PREDOMINANTLY CONTROL - .372 .299 .192 .138

PREDOMINANTLY REAL TIME .308 .308 .203 .166

PREDOMINANTLY INPUT/OUTPUT .205 .256 .423 .0.

PkEDOMINANTLY INTERACTIVE .270 .342 .264 .121

PREDOMINANTLY COMPUTATIONAL .277 .169 .133 .411 ..

MANY DISTINCT OPERATIONAL MISSIONS .38 .299 .175 .141

SEVERAL VARIATIONS OF OPERATIONAL MISSIONS .362 .298 .178 .162

SINGLE OPERATIONAL MISSION .323 .251 .194 .21.

MANY OPERATIONS REQUIRED - HIGHLY INTERRELATED .385 .316 .151 .14c

MANY OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .372 .236 .187 .191

FEW OPERATIONS REQUIRED - HIGHLY INTERRELATED- " .346 .316 .166 .172

FiW OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .343 .240 .182 .218

EXTENSIVE HARDWARE INTERFACE REQUIREMENTS .262 .425 .09 .104

- MINIMAL HARDWARE INTERFACE REQUIREMENTS --. 311 .264 .214 .175

EXTENSIVE SOFTWARE INTERFACE REQUIREMENTS284 .417 .175 .113
.4.. .-,.

M.k[MAL SOFTWARE INTERFACE REQUIREMENTS --- .307 .275 .215 .189

EXTENSIVE HUMAN INTERFACE REQUIREMENTS -------. .270 .341 .267 .112

IINIMAL HUMAN INTERFACE REQUIREMENTS --. 322 .269 .213 .:78

WIDE RANGE OF ERROR-PRONE INPUTS .303 .236 .263 .116

w",;. RANGE OF ERROR-FREE INPUTS .304 .253 .247 i,-

,5 NARROW RANGE OF ERROR-PRONE INPUTS .313 .236 .59 .:86.

NARROW RANGE OF ERROR-FREE INPUTS .311 .237 .74"6 .00

SUM OF THE VALUES CHECKED: ----- " - - -

Ai;C 6 SUM DIVIDED 'Y "
THE NUMBER OF CHECKS: ...-------

C(1) C(2) C(3) C(4)

Figure H-2a. Antenna Select Module Worksheet No. I ,,.,

c.,

li -8

% . .S : .,,- .,." ,. . .% . -. * .,) -,,.,,.,. " . ,,. '' ;, .. ., . ., ..,. Y,, w w % ,. " ° "

:~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~.S..- " 1, , ':.,:'),'_ '',. -. .** -P
"

. # '€S.,' '' ,. .. "4.,

WORKSHEET No.2 z, I
ERROR AVOIDANCE TECHNIQUES- Ahi1 NOMINAL CASE MODULE:----- --------

FACTOR (ChPCK) ll-Al 142

INDEPENDENT GUALITY ASSURANCE ORGANIZATION ---- .646 .6,,' .bK 5

INDEPENDENT TEST ORGANIZATION --- .696 .662 .651bbv

INDEPENDENT VERIFICATION AND VALIDATION (IV&VI .631 .661 .b48 .6?

USE OF A SOFTWARE SUPPORT LIBRARY .779 .757 .77? .157

-6- OF A SOFTWARE CONFIGURATION CONTROL BOARD ---- 7V7 .7 77.3

T~j&'0UGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN .---- 672 .652 .66E .67E

* :Gl3LY CONTROLLED SYSTEM REQUIREMENTS SPEC ---- .64b .617 .677 .69E

RIGIDLY CONTROLLED INTERFACE DESIGN SPEC ---- .6%6 .466 .63C .b

, ,-DLY CONTROLLED SOFTWARE REQUIREMENTS SPEC .598 .605 .6j4 b6(

RGIDLY CONTROLLED SOFTWARE FUNCTIONAL DESIGN SPEC
2°.637 .612 .655 .06

* :GIDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC --.1 61? .606 .610 .597

q EGUIREMENTS TRACEABILITY MATRIX ---- .64, b68l .72 .7,1

STRUCTURED ANALYSIS TOOLS ---- .66 .694 .717 .742

PROGRAM SPECIFICATION LANGUAGE (PSL) --- .662 .710 .1/<8

PKJGRAM DESIGN LANGUAGE (PDL --- .643 .6b7.71.1

KH ORDER LANGUAGE HOL .674 .706 .692 .6

ERARCHICAL, TOP-DOWN DESIGN - - .617 .633 .

ETRUCTU;ED DESIGN -.-- 6!9 .640 .o"" .7,-

:NDGLE FUNCTION MODULAIZATION .625 .674 .O.

DSTRUECTUED CODE ------- .629 .695 .63 .6.

USE OF AUTOMATIC MEASUREMENT TOOLS .761 .780 .77:

CE OF 46TOMATIC TEST TOOLS -. 7-- .78 .712 .B-

0 5 .0,. 36 .7

PRUCT OF THE .ALUES C.ECKED: d. S,.

ABOVE PRODUCT SUTRA.TED 4 .Q
F.O.4 cN: - .5 1

r..

Figure H-2b. Antenna Select Module Worksheet No. 2

l -9

-%

S~rCT~ED ESIN f.6+9 640.0 ".?1
.

"V

',., - -',, --- wnx r. r- ' 4r.' r-

WORKSHEET No. 3

ERROR DETECTION TECHNIQUES - 0(i) NOMINAL CASE MODULE: ,---,--

FACTOR (checK) 1-1(1) 1-0(2) I-D() 1-D(4).

FREOUENT PEER WALKTHROUGHS k._._ .548 .595 .621 .bO

INFREQUENT PEER WALKTHROUGHS .749 .775 .805 .797

FkEGUENT PROGRESS REVIEWS __ .7 .780O.785 .80?

INFREQUENT PROGRESS REVIEWS .890 .890 .89 11-,

FREGUENT GUALITY AUDITS .712 .731 .733 .?51

INFREQUENT QUALITY AUDITS .862 .868 .880 .8E'

USE OF SOFTWARE PROBLEM REPORTS PRIOR TO PGT _],."__ .668 .668 .703 .66-

USE OF SOFTWARE PROI'LEM REPORTS SUPSEGUENT TC POT .73 .722 .74E .?

USE OF SOFTWARE PROBLEM REPORTS SUBSEQUENT TO FT .755 .716 .163 .7!4

USE OF SPECIFICATION CHANGE NOTICES (SCN's) .807 .779 .811 Kc

USE OF ENGINEERING CHANGE NOTICES (ECN's)- .799 .76? .2 ..51E

SOFTWARE REGUIREMENTS REVIEW (SRR) - .686 .669 .12 726b

PRELIMINARY DESIGN REVIEW (PDR) .714 .679 .21 .722

RTTICAL DESIGN REVIEW (CDR) __ .677 .672 .69! ., E

TLST READINESS REVIEW (TRRI .799 .766 .78. ! "

FL:',CTIONAL CGNFIGURATION AUDIT (FCA) .818 .782 "

PHYSICAL CONFIGURATION AUDIT (PCA) .81 .826 .8?3 .E!-

INFORMAL UNIT-LEVEL TESTING .566 .662 .655 .544

PELIMINARY GUALIFICATION TESTING (POT) .639 .659 .682 .671*

FORMAL QUALIFICATION TESTING (FGT) --- .686 .700 .06

SOFTWARE INTEGRATION TESTING651 .550 .616 .t66

SYSTEM INTEGRATION TESTING670 .tG7 .b22 .bEE

OPERATIONAL FIELD TESTING673 .648 .637 .b6E

PRODUCT OF THE VALUES CHECKED: OtJ , c(- .-0-4 3 o 3
ABOVE PRODUCT SUETRACTE? . 5'9 , rl '•37 ?3 7
FROM ONE:

D(l) :Q) 3(3 Ct4

Flgure H-2c. Alluenna Select Modu~e Worksheet No. 3 1

H-IO

ILR

,C,$.' . .,..,'T. -"-"2.i . -. - '-. *. ---.. -.' -'-. A. - .:-'. . ,. -. - -. T -' . -. .. --- ' i .' "-2-. .'', - ',' --... , ,'-." .'

WORKSH4EET No. 4

MCD~jLE RELIAlBILITY CALCULATION -NOMINAL CASE MODULE: -------<~4"

Ai*i)substitute appropriate AWi and Ch) calculate
A DC(i) -- ----------------

1.0D1.00 .0-A(i)l substitute appropriate 0(i) and Dhi)

A(2)*C(Z)9(
--- ------------------- ----------

1.0 D(2)*[I.00 -A(?2 (l

A(2)*C(3). h (-

1.00 - D(2Q 10 -(! 510 (. c~4

------------- ------------------------------ ---------- ---

10 - 0(4)#(1.00 - A">-

SUM ALL TkE ADC2j: 7E;Mr--------

*Figure H-2d. Atenna Select Module Wrksheet. No. 4

CALCULATED ENwHANCE!ENT FAC'0 NCMINAL CASE

%
.4~~ k -4*

LAUNCHASSAULT BREAKER
".,'

R -O.999

R 0.996

U2

.-

0.80

R - 0.990 R -0.999..,
,. .. 3 10 ,.

,: iJ Y LE TERMINATE "

0.35 15 0.05 0.15 05 0.25

R 0.987 R 0.998 R 0.982 R 0.992 R 0.999 R 0.992
4 5 6 7 8

% .

Figure H-3. Annotated Flow Chart

,-

U-7

U-%.-',

H-12

%4

NODULE RELIABILITY MATRIX (h):

0.955 0.S96 0.550 0.587j 0.i95 0.582 0.SS52 0.555 0.5S5K 0.S95

PATH MATRIX (P):

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 L
0.000 0.000 0.800 C.000 0.000 0.000 0.000 0.000 0.000 0.:00
0.000 0.000 0.000 0.350 0.i',o 0.0t0 0.1,0 0.0,0 0.:, 0.000
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 :.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CONDITIONAL PATH MATRIX (I = RxP).

0.000 0.59s 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.797 0.000 0.000 0.000 0.000 0.000 0.000 0.159
0.000 0.000 0.000 0.347 0.145 0.049 0.149 0.049 0.248 0.000
0.000 0.987 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.582 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.992 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.59 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.5 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

IDENTITY - 6 MATRIX (N = l-G):
1.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000.-0.000? 0.000 0.000 0.000 0.000 0.000 0.000 -0.000
0.000 0.000 :.000 -0.34' -0..45 -0.04S' -0.14S -0.049 -0.248 0.000 ,
0.000 -O.5,E' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 -O.555 0.000 0.000 0.000 0.000 C.000 0.000 0.000 0.000
0.000 -O.SE: 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 -0.000 0.000 0.000 C.000 0.000 :.000 0.000 0.000 0.000S0.000 -0.'s' ' 0.000 0.000 0.000 0.000 C.000 :.000 0.000 0.000

,0.000 -OJ,9": C.000 0.000 C.000 0.000 0.00 0.000 :.000 C.000 ,
,.0.000 0.000 0.000 0.000 0.600 ov 0.,0 .00 6.000 moo0 '..00 "o'

%

SOLUTICN NKTRIX (S z 7NVEkSE w):

.000 4.57"1 ':.64* 1. 64 0.,4- 0.161 0.'.42. 0.11. 0.03 0." -
0.000 4.182 3.651 1.265 0.1.42 0.181 0..42 0.1.E 0.S04 0.S,1 ':
0.000 4.4i', 4.E81 1. aE8 0. 80 0.227 0.680 0.2:. 1.134 0.51"-
0.000 4..1.2 .:.o03 1..,48 0.5'2 0.175 0..0. O.I.8E 0.892 0.901
0.000 4..*/2 3.643 1.262 1.41 0.180 0.541 0.1E0 0.502 0.511
0.000 4.45S 3.585 1.242 0.'.3- 1.177 0.!32 0.1"0 O.E8/ 0.i6"
0.000 4.!4. 3.621 1.2t. 0.1.38 0.179 1.538 0.1-S O.E8% 0.50t
0.000 4.577 3.647 1.264 0.-,42 0.!81 0.-,42 1.181 0.903 0.912
0.000 4.1.4t 3.621 1.2= .0.t38 0.17S O.tE8 0.175 1.856 0.501.
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

9;rhE RELIABILITY (~n*(.n1 0.911

F.igure1 H-4. Computer Out puL

H-13

V
A"I

" " ,,' , ' °' .', '% ',.,.'.',.,.'; .Y',' W" -" . ..W" "'%A

APPENDIx I :

WORKS HE ET S '

..",-"

.'.' "

't'.

. .' .'. ", " "- "-. ' - ,'. .' ,,.% .' .'..'. '- " .% "-.-.' .'-.-.' .'- '. '- - .' .- ,'-. ' .% h- "'.', ,, , o'-" " '-'. '.- -'. -'-" '.- .,-

?.1

1.0 EXPLANATION OF WORKSHEET TERMS

1.1 Error Categories

Each of the worksheets contains four sets of calculations, identified
via the subscripts 1 through 4. These subscripts are used to separate the

effects of four different error types as follows:

1 LOGICAL ERRORS - This category includes all instances where a par-
ticular function is incorrect, inadequate or missing du., to instit-

ficient requirements definition, design errors or omissions, ,r
implementation errors.

2 INTERFACE ERRORS - This category includes all instqice.. wiwr. a

required function is not implemented properly due to, mptp.r
communication between system components. All possib, inti a . s
are included in this category:

o Software/Software: Includes errors which occur bet ween sot ware
components of the system such as when one program unit tails to

|" call, calls in the wrong sequence, or otherwise improperly calls
another program unit. Also included are all errors resulting
from the improper sharing or passing of data and/or control
variables between program units.

o Software/Hardware: Includes all errors which result in loss of
data or untimely exchange of data between system hardware and

* embedded software. Included are situations where buffers become
saturated or computation cycles exceed their timing allocations.
Also included are errors caused by improper data exchange
between system hardware and embedded software.

o Software/Human: See Input/Output Errors.

3 INPUT/OUTPUT ERRORS - This category includes all instances where arequired function is not properly accomplished due to the manner in

which input or output is implemented. For purposes of this survey,
include in this category all software/human interfaces. For
example, on input, the software may either accept improper commands
or reject proper ones. On output, the software may generate
erroneous or ambiguous messages to the operator.

4 COMPUTATIONAL ERRORS - These are calculation errors, which include:
errors of omission such as uninitialized variables; mathematical
errors such as incorrect expressions, conversion and truncation;
and programming errors such as improper use of indices, variables

and overlays.

1 .2 Worst, Nominal and Best Cases

Included in this appendix are three sets of worksheets (four sheets

each). Each set includes numerical values for inherent characteristics,
avoidance techniques and detection techniques as well as a final calcu-

1-2
..4

%%

. 0,

lation sheet. The sets are labeled worst, nominal and best case, respec-

tively The values were calculated statistically from the survey data
described in detail in Volume I of this report. The nominal case repre-

sents the mean response to the survey. Best and worst are the 1-sigma
values from the same survey.

1.3 Worksheets

The instructions for the worksheets are self-evident. The analyst
o need only check the appropriate characteristic or technique and perform theindicated operations. All four worksheets are based on the equations

described in Appendix E of this volume and derived in Volume I.

On Worksheet 1, values for C(i) are listed. They represent the error
type distribution expected due to each listed factor.

* On Worksheet 2, the values listed are not the values of A(i) but
rather 1.0 - A(i). Reference to Appendix D will show that the calculation
of the overall avoidance effectiveness requires computing the product of
the Non-avoidance probabilities of each technique used. The representation
used in the worksheet was chosen to simplify this calculation. When the
worksheet is completed in accordance with the instruction listed, the
overall avoidance factors will result.

By the same rationale as above, Worksheet 3 lists the values on -
Non-detection probabilities. When the worksheet is completed in accordance

with the instruction listed, the overall detection factors will result.

Worksheet 4 provides a straightforward implementation of the
enhancement factor as defined in Appendix D.

1-3

1-3 "

- --- ,-- -

WORKSHEET No. 1

INHERENT CHARACTERISTICS - C(0) WORST CASE MODULE: ...------ =

FACTOR (checK) C(1) C(2) C(3) C(4)

PREDOMINANTLY CONTROL .372 .299 .192 .138

PREDOMINANTLY REAL TIME ----- .308 .308 .203 .166

PREDOMINANTLY INPUT/OUTPUT .205 .256 .423 .105

PREDOMINANTLY INTERACTIVE .270 .342 .264 .121

PREDOMINANTLY COMPUTATIONAL- .277 .169 .133 .411

?ANY DISTINCT OPERATIONAL MISSIONS .385 .299 .175 .141

SEVERAL VARIATIONS OF OPERATIONAL MISSIONS .362 .298 .178 .162

SINGLE OPERATIONAL MISSION .323 .251 .194 .212

MANY OPERATIONS REQUIRED - HIGHLY INTERRELATED .385 .316 .15! .149

MANY OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .372 .236 .187 .191

FEW OPERATIONS REQUIRED - HIGHLY INTERRELATED .346 .316 .168 .172

FEW OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .343 .240 .182 .218

EXTENSIVE HARDWARE INTERFACE REQUIREMENTS .262 .425 .209 .104

MINIMAL HARDWARE INTERFACE REQUIREMENTS -...- .311 .284 .214 .175
EXTENSIVE SOFTWARE INTERFACE REQUIREMENTS -...- .284 .417 .175 .113

MINIMAL SOFTWARE INTERFACE REQUIREMENTS ----- .307 .275 .215 .189

EXTENSIVE HUMAN INTERFACE REQUIREMENTS - .270 .341 .267 .112

MINIMAL HUMAN INTERFACE REQUIREMENTS .322 .269 .213 .178

WIDE RANGE OF ERROR-PRONE INPUTS .303 .236 .283 .178

WIDE RANGE OF ERROR-FREE INPUTS .304 .253 .247 .192

NARROW RANGE OF ERROR-PRONE INPUTS .313 .236 .259 .180

NARROW RANGE OF ERROR-FREE INPUTS .311 .237 .248 .200.4

SUN OFTHE VALUES CHECKED: ---- -- ------ -- -

ABOIVE SUM DIVIDED BY
THE NUMBER OF CHECKS: -

,.. C(1) C(2) C(3) C(4)

1-4,

r w--

.. --I-- .' - .-

WORKSHEET Ne. 2

ERROR AVOIDANCE TECHNIQUES - A(i) WORST CASE MODULE: ---

FACTOR (check) 1- A(l) 1-A(2) I-A(3) I-A(4)

. INDEPENDENT QUALITY ASSURANCE ORGANIZATION .704 .706 .747 .755

INDEPENDENT TEST ORGANIZATION749 .715 .705 .699

INDE ENDENT VERIFICATION AND VALIDATION (IV&V) .685 .712 .704 .678

USE OF A SOFTWARE SUPPORT LIBRARY .821 .800 .814 .803

USE OF A SOFTWARE CONFIGURATION CONTROL BOARD .819 .729 .820 .870

THOROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN723 .702 .718 .731

RIGIDLY CONTROLLED SYSTEM REQUIREMENTS SPEC ----- .695 .666 .724 .747

RIGIDLY CONTROLLED INTERFACE DESIGN SPEC - .747 .514 .680 .817

RIGIDLY CONTROLLED SOFTWARE REQUIREMENTS SPEC ----- .647 .653 .682 .705

RIGIDLY CONTROLLED SOFTWARE FUNCTIONAL DESIGN SPEC .683 .660 .703 .703

RIGIDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC .665 .659 .661 .647

REQUIREMENTS TRACEABILITY MATRIX .702 .728 .786 .819

STRUCTURED ANALYSIS TOOLS .714 .740 .766 .788

PROGRAM SPECIFICATION LANGUAGE (PSL) .731 .758 .792 .801

PROGRAM DESIGN LANGUAGE (PDL) .690 .733 .767 .761

HIGH ORDER LANGUAGE (HOL) .721 .752 .747 .698

HIERARCHICAL. TOP-DOWN DESIGN .664 .678 .732 .781 4-

STRUCTURED DESIGN .665 .688 .726 .762

SINGLE FUNCTION MODULARIZATION .675 .726 .750 .742

STRUCTURED CODE .677 .740 .769 .714

USE OF AUTOMATIC MEASUREMENT TOOLS .806 .824 .816 .905

USE OF AUTOMATIC TEST TOOLS .749 .766 .760 .743

PRODUCT OF THE VALUES CHECKED: ----- ----------

AROM ABOVE PRODUCT SUBTRACTED A,

FROM ONE: ----------------- ----

A~) A(2) A(3) A4)

1-5

.%5

N. N. N .~.. ..

'" ." ? N," -. ,!"

55.;0

WORKSHEET No. 3 A,

ERROR DETECTION TECHNIQUES - 0(i) WORST CASE MODULE: --

FACTOR (check) I-D(1) I-D(2) 1-D(3) 1-l(4)

FREQUENT PEER WALTHROUGHS .595 .645 .672 .657

INFREDUENT PEER WALATHROUGHS .785 .813 .840 .832

FREQUENT PROGRESS REVIEWS802 .823 .830 .844

INFREQUENT PROGRESS REVIEWS - .?12 .914 .922 .933

FREQUENT QUALITY AUDITS .757 .778 .779 .799

INFREQUENT QUALITY AUDITS .891 .896 .905 .907

USE OF SOFTWARE PROBLEM REPORTS PRIOR TO POT719 .719 .755 .740

USE OF SOFTWARE PROBLEM REPORTS SUBSEQUENT TO PDT .779 .768 .792 .788

USE OF SOFTWARE PROBLEM REPORTS SUBSEGUENT TC FOT - .801 .770 .810 .802

USE OF SPECWFICATION CHANGE NOTICES (SCN's) .849 .822 .850 .869 -

USE OF ENGINEERING CHANGE NOTICES (ECN's) .843 .816 .846 .861

SOFTWARE REQUIREMENTS REVIEW (SRR)735 .714 .766 .812

PRELIMINARY DESIGN REVIEW (PDR) .755 .720 .762 .815

CRITICAL DESIGN REVIEW (CDR) .719 .713 .738 .780

TEST READINESS REVIEW (TRR)837 .807 .821 .838

FUNCTIONAL CONFIGURATION AUDIT (FCA)860 .825 .836 .859

PHYSICAL CONFIGURATION AUDIT (PCA) .888 .862 .859 .891

INFORMAL LINIT-LEVEL TESTING .614 .734 .707 .593

PRELIMINARY QUALIFICATION TESTING (POT) .686 .703 .727 .728

FORMAL GUALIFICATION TESTING (FOT)733 .744 .758 .749

SOFTWARE INTEGRATION TESTING696 .595 .663 .116

SYSTEM INTEGRATION TESTING .718 .632 .6E0 .740

OPERATIONAL FIELD TESTING .706 .680 .663 .727

PRO D U C T O F T H E V A L U E S C H E C K E D : ---------- ..- --- --

ABOVE PRODUCT SUBTRACTED %
FROM ONE:-- - - - - - - - - - -- - - - - - - -- -

D(1) D(2) D(3 ,.

T -6

V'i

...............................~ . .- '. -:

* WORKSHEET No. 4

MODUL.E RELIABILITY CALCULATION - WORST CASE MODULE: --------------------------

A(iI*C(j) substitute appropriate A(j) and C(i) calculate
ADCi) - - - - - - - - - - - - - -- -

1.00 - D~i)ef1.00 - A(0)) substitute appropriate A(i) and D(i)

1.0 - -)(.0 ~)

A(2)*C(2)
ADC(1) -- --------

1.00 - D(l)#[l.00 - A(?-)]

A(3)*C(3) 4

ADC(3) ------------------ -------------------------------------- ------- --------

1.00- D(3)#[1.00 -A(31J)] A

A(4)#C(4)
ADC(31 -------------------------. ----------------------------------- --------

1.00 -D(4)#[1.00 -A(4)]

ADC(4)~---

.r1-7

WORKSHEET No. I

INHERENT CHARACTERISTICS - C(i) NOMINAL CASE MODULE: --

FACTOR (checK) C(I) C(2) C(3) Ca4.
-------------------------------. --------------------

PREDOMINANTLY CONTROL .372 .299 .192 .138

PREDOMINANTLY REAL TIME .308 .306 .203 .166

PREDOMINANTLY INPUT/OUTPUT .205 .256 .423 .105

PREDOMINANTLY INTERACTIVE .270 .342 -264 .121

PREDOMINANTLY COMPUTATIONAL .277 .169 .133 .411

MANY DISTINCT OPERATIONAL MISSIONS .385 .299 .175 .141

SEVERAL VARIATIONS OF OPERATIONAL MISSIONS .362 .298 .178 .162

SINGLE OPERATIONAL MISSION .323 .251 .194 .212

MANY OPERATIONS REQUIRED - HIGHLY INTERRELATED .38 .316 .151 .149

MANY OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .372 .236 .187 .191
FEW OPERATIONS REQUIRED - HIGHLY INTERRELATED .346 .316 .168 .172

FEW OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .343 .240 .182 .218

EXTENSIVE HARDWARE INTERFACE REQUIREMENTS .262 .425 .209 .104

MINIMAL HARDWARE INTERFACE REQUIREMENTS .311 .284 .214 .175

EXTENSIVE SOFTWARE INTERFACE REQUIREMENTS .284 .417 .175 .113

MINIMAL SOFTWARE INTERFACE REQUIREMENTS .307 .275 .215 .189

EXTENSIVE HUMAN INTERFACE REQUIREMENTS ---- .270 .34, .267 .112

MINIMAL HUMAN INTERFACE REQUIREMENTS .322 .269 .213 .178

WIDE RANGE OF ERROR-PRONE INPUTS .303 .236 .283 .178

W!71 RANGE OF ERROR-FREE INPUTS .304 .253 .247 .192

NARROW RANGE OF ERROR-PRONE INPUTS .313 .236 .25? .2180

NARROW RANGE OF ERROR-FREE INPUTS - .311 .237 .248 .200 "

SUM OF THE VALUES CHECKED:

ABOVE SUM DIVIDED Y %,Y
THE NUMBER OF CHECKS:-- - - - - -- - -- -- - - -- -- - - -C(I) C(2) C(C(4)

T-8

--., -- :.,-..

WORKSHEET No. 2

ERROR AVOIDANCE TECHNIQUES - Ahi) NOMINAL CASE MODULE: --

FACTOR (check) I-A(1) l-A(2) I-A(3) 1-A(4)

INDEPENDENT GUALITY ASSURANCE ORGANIZATION .646 .653 .692 .697

INDEPENDENT TEST ORGANIZATION .696 .662 .651 .646

INDEPENDENT VERIFICATION AND VALIDATION (IV&V) .631 .661 .648 .622

USE OF A SOFTWARE SUPPORT LIBRARY .779 .757 .772 .757

USE OF A SOFTWARE CONFIGURATION CONTROL BOARD .775 .679 .777 .831

THOROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN .672 .652 .668 .678

RIGIDLY CONTROLLED SYSTEM REQUIREMENTS SPEC .646 .617 .677 .698

RIGIDLY CONTROLLED INTERFACE DESIGN SPEC .698 .466 .630 .769

RIGIDLY CONTROLLED SOFTWARE REQUIREMENTS SPEC .598 .605 .634 .660

RIGIDLY CONTROLLED SOFTWARE FUNCTIONAL DESIGN SPEC .637 .612 .655 .6564
RIGIDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC .617 .608 .610 .597

REQUIREMENTS TRACEABILITY MATRIX .645 .681 .738 .771

STRUCTURED ANALYSIS TOOLS .663 .694 .717 .742

PROGRAM SPECIFICATION LANGUAGE (PSL) .682 .710 .748 .752

PROGRAM DESIGN LANGUAGE (POL. .643 .687 .721 .714 1*

HIGH ORDER LANGUAGE (HOL) .674 .706 .698 .651

HIERARCHICAL, TOP-DOWN DESIGN .617 .633 .685 .735

STRUCTURED DESIGN .619 .640 .677 .71

SINGLE FUNCTION MODULAkIZATION .625 .674 .698 .692

STRUCTURED CODE .629 .695 .720 .663

USE OF AUTOMATIC MEASUREMENT TOOLS .761 .780 .772 .755 "

USE OF AUTOMATIC TEST TOOLS .699 .718 .713 .692

PRODUCT OF THE VALUES CHECKED: - - - - ---.- -.-- -

ABOVE PRODUCT SUBTRACTEDF, ROM ONE: ------- ------------ -----
.,.O.:A(l) A(2) A(3) A(4)

1-9

9 %.

-;42

WORKSHEET No. 3

ERROR DETECTION TECHNIQUES - 010) NOMINAL CASE MODULE: ---

FACTOR (check) 1-1(1) 1-1(2) 1-D(3) 1-D(4)

FREQUENT PEER WALKTHROUGHS .548 .595 .621 .607

INFREQUENT PEER WALKTHROUGHS .749 .775 .805 .797

FREQUENT PROGRESS REVIEWS7!5 .780 .785 .802

INFREQUENT PROGRESS REVIEWS .890 .890 .898 .912

FREQUENT QUALITY AUDITS .712 .731 .733 .755

INFREQUENT QUALITY AUDITS .862 .868 .880 .882

USE OF SOFTWARE PROBLEM REPORTS PRIOR TO POT .666 .668 .703 .685

USE OF SOFTWARE PROBLEM REPORTS SUBSEQUENT TO POT .735 .722 .748 .742

USE OF SOFTWARE PROBLEM REPORTS SUBSEQUENT TO FOT .755 .716 .763 .754

USE OF SPECIFICATION CHANGE NOTICES (SCN's) .807 .779 .811 .829

USE OF ENGINEERING CHANGE NOTICES (ECN's) .799 .769 .802 .818

SOFTWARE kEGUIREMENTS REVIEW (SRR) .686 .669 .720 .766

PRELIMINARY DESIGN REVIEW (PDR) .714 .679 .721 .773

CRITICAL DESIGN REVIEW (CDR)677 .672 .695 .738

TLST READINESS REVIEW (rRRI .79? .766 .781 .797

FLW.CTIONAL CONFIGURATION AUDIT (FCA) .818 .782 .792 .817

PHYSICAL CONFIGURAiION AUDIT (PCA) .851 .826 .823 .855

INFORMAL UNIT-LEVEL TESTING .566 .682 .655 .544

PkELIMINARY GUALIFICATION TESTING (POT) .639 .659 .682 .679

FORMAL QUALIFICATION TESTING (FOT) .686 .700 .711 .698

SOFTWARE INTEGRATION TESTING .651 .550 .618 .666

SYSTEM INTEGRATION TESTING .670 .587 .633 .688

OPERATIONAL FIELD TESTING .673 .648 .637 .683

PRODUCT OF THE VALUES CHECKED:.-.'-----

ABOVE PRODUCT SUBTRACTED
FROM ONE: ---------- - ---- ----------

D(I) D(2) D(3) D(4)

1-10

-... . '

'4.... ~44**~-44 - -w
, ±...s < t<s. , ti.

WORKSH4EET No. 4

KDULE RELIABILITY CALCULATION -NOMINAL CASE MODULE: --------------------------

A(i)*C(i) substitute appropriate A.(i and Ch) calculate

1.00 - D(i)*'1.00 - A(i)J substitute appropriate iA(i and DI~

ADC(1) A(1)#C(1)-

1. ,0 - 0(1)*(1.00 - A(1)I

N..

A(2)*C(2) S

l.A0 - 0(2)11.00 - A(2)]

A(3)*C(3)

*1.00 - D(3:*U.00 - A3,

A(4)*C(4)
APC(4) ------------ --- --------

1.-0 -D(4)*[i.00 - A(43

SUM ALL THE ADCUi: TERMS ---- --------

(coprl

S.I- CALCULATED EkHANCEMENT FACT~fk NOMINAL CASE --------

"v,%

I' v,r'- Zrr r -..-.. ,,~ -. .

#J0

WORKSHEET No. 1

INHERENT CHARACTERISTICS - C(i) BEST CASE MODULE: --

FACTOR (check) C() C(7) C(3) CC4,.

PRE4VMINANTLY CONTROL .37, .299 .19' 713,

PREDOMINANTLY REAL TIME .308 .308 .203 .166

P KDOMINANTLY INPUT/OUTPUT .205 .256 .422 .

PREDOMINANTLY INTERACTIVE .270 .342 .264 .:2:

PREDOMINANTLY COMPUTATIONAL .27? .169 .133 .411

MANY DISTINCT OPERATIONAL MISSIONS .385 ..19 .i7c .141

Si.ERAL VARIATIONS OF OPERATIONAL MISSIONS .36.' .198 .178 .162

SINGLE OPERATIONAL MISSION .323 .251 .94 .21-

MA.JY OPERATIONS kEGUIRED - HIGHLY INTERRELATED .381 .316 f1f .149

MANY OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .372 .236 .187 .191

FEW OPERATIONS REQUIRED - HIGHLY INTERRELATED .246 .31 .168 .172
FIW OPERATIONS REQUIRED - RELATIVELY INDEPENDENT .343 .240 .182 .218

EXTENSIVE HARDWARE INTERFACE REQUIREMENTS .2 .42t" .209 .104 -'

MINIMAL HARDWARE INTERFACE REOUIREMENTS .311 .284 .214 .:75

ExTENSIVE SOFTWARE INTERFACE REQUIREMENTS .284 .417 .175 .1 82

MINIMAL SOFTWARE INTERFACE REQUIREMENTS .307 .--- .215 .!S9

EXTENSIVE HUMAN INTERFACE REQUIREMENTS .2,--0 .241 .:'67 .112

.,IIMAL HUMAN INTERFACE REQUIREMENTS ."2, .26; .213 .176

W:DE RANGE OF ERROR-PRONE INPUTS .303 .236 .283 .178

,!DE RANGE OF ERROR-FREE INPUTS .304 .253 .241

,',RRGW rANGE OF ERROR-PRONE INPUTS .--13 .236 .259 .180

NArrOW RANGE OF ERROR-FREE INPUTS .-- .1 237 ..,4E .20

SUM OF THE VALUES CHECKED: - --

AC'JE SUM DIVIDED BY , '%,

THE NUMIER OF CHECKS: - ---
2(I) C(2) C(3; C(4;

J : .

1-12

5'-i%
-,. ,.-

WORKSHEET No. 2

ERROR AVOIDANCE TECHNIQUES - A(i) PEST CASE MODULE: ------------------------------......................

FACTOR (check) I-A(1) 1-A(2) I-A(3) l-A(4)

INDEPENDENT GUALITY ASSURANCE ORGANIZATION . 88 .600 .637 .63"

INDEPENDENT TEST ORGANIZATION .644 .609 .596 594

Ik3EPENDENT VERIFICATION AND VALIDATION (IV&V) .578 .610 .593 .566

USE OF A SOFTWARE SUPPORT LIBRARY .731 .713 .730 .712

USE OF A SOFTWARE CONFIGURATION CONTROL BOARD .730 .629 .734 .792

THOROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN .620 .602 .617 .62

RIGIDLY CONTROLLED SYSTEM REQUIREMENTS SPEC .5' .t69 .631 .646

RIGIDLY CONTROLLED INTERFACE DESIGN SPEC .649 .417 .579 .722

RIGIDLY CONTROLLED SOFTWARE REQUIREMENTS SPEC .549 .557 .586 .614

RIt;IDLY CONTROLLED SOFTWARE FUNCTIONAL DESIGN SPEC .591 .564 .607 .boa

b RItDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC .568 .5:6 .t59 .546

REQUIREMENTS TRACEABILITY MATRIX .:89 .634 .689 .724
S!RUCTURED ANALYSIS TOOLS .612 .648 .669 .695

PROGRAM SPECIFICATION LANGUAGE (PSL) .632 .661 .703 .702

PROGRAM DESIGN LANGUAGE (PDL) ."97 .642 .675 .666

Hf3H ORDER LANGUAGE (HOL) .626 .6S9 .649 .603

HIERARCHICAL, TOP-DOWN DESIGN .170 .567 .637 .688

STRUCTURED DESIGN .--3 .-2 .628 .669

SINGLE FUNCTION MODULARIZATION .--- .623 .645 .a42

STRUCTURED CODE .---- .649 .670 .613

LSE OF AUTOMATIC MEASUREMENT TOOLS .17 . 26 .728 .706

USE OF AUTOMATIC TEST TOOLS .60 .671 t)65 .642

PRODUCT OF THE VALUES CHECKED: -------------

ABJ..E PRODUCT SUBTRACTED
FROM ONE:

A(A(2) A(3) A(4)

1.13

' q ,: i;,::-' ; : ;..i: 1-13:

AIRKSHEET No. 2

ERROR DETECTION TECHNIQUES - O(i) EST CASE MODULE:---

FACTOR (chea) I-DI) 1-D2 -92) :-;4

FtEQUENT PEER WALNTHROUGHS -.- 0- .6 .71 . 74

INFREQUENT PEER WALKTHROUGHS ,,- .1 . ,2 . 736 .76-2

Fi(P UENT PROGRESS REVIEWS .709 ."32 .76,

IN:REGUENT PROGRESS hEVIEWS .867 .8t .0;1 .'

REUENT GUALITY AUDITS .666-.--- .o.6 .

INFREQUENT QUALITY ,nUDITS ------.- 2 .E40 .e. S t 6

UK OF SOFTWARE PROBLEM REPORTS PRIO, -0 PT 6 . . ' m
. o

SE OF SOFTWARE PROBLEM REPORTS SUBSESUENT TO PT .------------ - .tW .0CC .6?'

USE CF SOFTWARE PROBLEM REPORTS SUFSEQUENT TO FGT .:s .662 17 .,_

L-SE OF SPECIFICATION CHANGE NOTICES kSCN's) .eV .-- .77 . .

- OF ENGINEERING CHANGE NOTICES (EC,'s) ------- 2:: .7 ."
'>TWARE , EGuIREMENTS NEVIEw (SRR) .ba; .6:4 .,.

?.E-IMlNiiY DESIGN REVIEW Y P, .t. .bc

L'CAL D ES:GN REJIEW (CO'R .6.4 .o, ..

TiST READINESS iE T REw T/60 , .- .641 ..14 '

rU,'CTIONAL CGN'IGUR TIGN 'UDIT iFCA) .- ,-- ,,4

PrYS.Ci. ,XNFIGu,!,IN ,ZI T (PCA) .E13 . A . .o
%CR, A. UN: T-JEL : " TE r:G . .Uc .0

lptINARY GUMFIOMI.N TESTING iPGT: -- -- ,t. .U&

h ,,aULI-1Ci TICN TESTING iF' .--- .- .4

* . RE ' " i. TETN v. --,1

E .S .,KG2YIN TESTING .c--- .:, .

CKR'CN,',L rIELZ TESTING --- t .5 .t ,- -

P;,DC "F THE vALUES CHECKED: - "--- ".

A.OvE PRODUCT SuETkACTE:
;4 ONE:- .- - --

1-14

%I -'.&f. .

l- . -* . ! -/l- .A- t I*i

WORKSHEET No. 4

N'. JLE RELIABILITY CALCULATION - EST CASE MODULE: -------------------------

Ai)*C(i) substitute appropriate ij.(j) and C(i) calculate
ADC(i) -- - - - - - -

1.00 -D(i)'fl.00 - A(01l substitqut appropriate j',(j anG 0(i)

1.00 0-PD(1.00 - A(1)]-

V21.C(2)

;.;)0 -D2~10

V4)*C(4)
.. A C (41 - -- - - -- -----

:.00 -DW W(.00 1- 41

SUP ALL ThF ADCV.: 'F-I --

1-15 CALCULATED ENHIANCEMENT FACT-CR - DES- CASE -------

Uv
~p V 9~44- - .. ,- 1 ... *.--4-.I

3.... .*

U MISSION
* Of

Roae Air Development Center
RADC ptanz and execu-tes te.6eatch, devetopment, test
and .ze.ected acquistion pIogt.amA in suppotLt oj

*Command, Conttot, Communicatons and IntettUgence.
(C31) activitezs. Technicat and engineeting
4uppo'tt within ateaz o6 competence is p'rovided to

*ESV Ptog,%am O66ice4 (POs) and othVL ESO tmet
to pvL~ot'm e66ective acquisition o6 C31 4ytez
The a~eaz o6 technicat competence inctude
commu~nications, command and cont,%ot, batttLe
management, indotmation ptoceszi.ng, suveittance
ze.o/z intettigence data cottection and handtin g,

* , -6otid state sciences, etecttromagnetitcs, and
p'Lopagation, and etect'Lonic, maintainabifZity,
and comipatibitity.

717

DT I(.. '.. r~

4fr.t ED ~-

